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Abstract. The aim of this paper is to design a feedback operator for stabilizing in infinite time horizon a system modeling
the interactions between a viscous incompressible fluid and the deformation of a soap bubble. The latter is represented
by an interface separating a bounded domain of R2 into two connected parts filled with viscous incompressible fluids. The
interface is a smooth perturbation of the 1-sphere, and the surrounding fluids satisfy the incompressible Stokes equations
in time-dependent domains. The mean curvature of the surface defines a surface tension force which induces a jump of
the normal trace of the Cauchy stress tensor. The response of the fluids is a velocity trace on the interface, governing the
time evolution of the latter, via the equality of velocities. The data are assumed to be sufficiently small, in particular the
initial perturbation, that is the initial shape of the soap bubble is close enough to a circle. The control function is a surface
tension type force on the interface. We design it as the sum of two feedback operators: one is explicit, the second one is
finite-dimensional. They enable us to define a control operator that stabilizes locally the soap bubble to a circle with an
arbitrary exponential decay rate, up to translations, and up to non-contact with the outer boundary.
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1. Introduction

In this paper we consider a model that describes the time evolution of an interface Γ(t) separating
a bounded fluid domain Ω ⊂ R

2 into two connected components. The fluid is assumed to be viscous
and incompressible. This interface represents a soap bubble, and is subject to surface tension forces.
Surface tension is the result of intermolecular forces in fluids (air or liquid, see [64]). We consider the
low Reynolds number case, that is the inertia forces are assumed to be negligible compared to the other
involved forces (viscosity effects, surface tension, electric field, etc. . . ), which is typically the case of blood
flows [39] containing globules [9]. We will also neglect the temperature effects. Our aim is to stabilize the
deformations of this soap bubble such that this latter converges to a circle, with a prescribed exponential
decay rate, via the design of a feedback operator acting on the interface. Our contribution falls within
the modeling and mathematical aspects of the motion of bubbles out of equilibrium.

1.1. The Model

Due to incompressibility, the volume contained inside the soap bubble remains constant, and any sphere
of this volume, strictly contained in Ω, can be considered as the sphere of reference Γs. Denoting by
X(·, t) the Lagrangian deformation of this sphere, the deformed soap bubble is given by Γ(t) = X(Γs, t),
with the initial condition X0 = X(·, 0), and separates the whole domain Ω into two subdomains Ω+(t)
and Ω−(t), corresponding to the exterior and the interior of the soap bubble, respectively. The geometric
description and notation are given in Fig. 1.

We will assume throughout the paper that Γ(t) is a Jordan curve, that X(·, t) is invertible and
orientation preserving, and the non-contact condition, that is Γ(t) ⊂ Ω̊. This can be guaranteed by

n0

ns

Ω−
s

Ω+
s

n

X0(Γs)

X(·, t)

X0 X(·, t) ◦ X−1
0

Γs Γ(t)

Ω−(t) Ω+(t)

Fig. 1. Deformation of the soap bubble, from the reference configuration Γs, to Γ(t) at time t
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assuming the data smooth and sufficiently small, in particular X0 close enough to the identity, implying
that X(·, t) stays close to the identity as well. With this condition, we then have Γ(t) = ∂Ω−(t) and
∂Ω+(t) = ∂Ω∪Γ(t) (disjoint union), and Ω+(t) is connected. The deformation X and the velocity/pressure
couples (u+, p+), (u−, p−) constitute the unknowns of the following system

−div σ(u+, p+) = f+ in Ω+(t), t ∈ (0,∞),
−div σ(u−, p−) = f− in Ω−(t), t ∈ (0,∞),

div u+ = 0 in Ω+(t), t ∈ (0,∞),
div u− = 0 in Ω−(t), t ∈ (0,∞),

u+ = 0 on ∂Ω × (0,∞),

u+ = u− =
∂X

∂t

(
X(·, t)−1, t

)
, on Γ(t), t ∈ (0,∞),

σ(u+, p+)n+ + σ(u−, p−)n− = μκn− + g on Γ(t), t ∈ (0,∞),
X(·, 0) = X0 on Γs,

where Γ(t) = X(Γs, t) splits Ω into Ω+(t) and Ω−(t). We adopt the Lagrangian formalism for describing
the interface Γ(t): Particles of coordinates x ∈ Γ(t) are obtained uniquely from particles y ∈ Γs as

x = X(y, t), and their velocity writes
∂X

∂t
(y, t). On the other hand, the Eulerian velocities u+ or u−

describe the velocity field of particles occupying position x ∈ Ω+(t) or Ω−(t) at time t. Therefore from

the equality of particle velocities on Γ(t) we have the relation
∂X

∂t
(y, t) = u+(X(y, t), t) = u−(X(y, t), t),

leading to the equality of Eulerian velocities on Γ(t) above, by using y = X(x, t)−1. The pressure variables
p+ and p− play the role of Lagrange multipliers for the zero divergence conditions, referring to the
incompressibility of the fluid. We have introduced the Cauchy stress tensor σ(u, p) := 2νε(u)−pId, where
ε(u) := Sym(∇u) = 1

2 (∇u + ∇uT ), and the viscosity ν > 0 is constant and assumed to be the same in
Ω+(t) and Ω−(t), for the sake of simplicity, but without loss of generality. We denoted by n+ and n−

the outward unit normal of Ω+(t) and Ω−(t), respectively. By default we denote n = n− = −n+. The
parameter μ > 0 is a given constant surface tension coefficient, and κ denotes the mean curvature of Γ(t),
with the convention κ < 0 for the 1-sphere. In dimension 2, the mean curvature is simply called the
curvature. The right-hand-sides f+ and f− are given volume forces, representing for example the effect
of an electric field [71], or some density contribution like in the case gravity Stokes flows [32], leading to
the so-called Stokes-transport system [40,43]. The function g is a surface tension type force, acting on the
interface Γ(t). It will be considered as the control function, and will be chosen in the form of a feedback
operator. For the sake of concision, we rewrite the system above as follows:

− div σ(u±, p±) = f± and div u± = 0 in Ω±(t), t ∈ (0,∞), (1a)
u+ = 0 on ∂Ω × (0,∞), (1b)

u± =
∂X

∂t

(
X(·, t)−1, t

)
and − [σ(u, p)] n = μκn + g on Γ(t), t ∈ (0,∞), (1c)

X(·, 0) = X0 on Γs. (1d)

We have denoted by [ϕ] = ϕ+ − ϕ− the jump across Γ(t) of a vector/matrix field, and by ϕ± when we
consider ϕ+ and ϕ− separately, simultaneously, and respectively. In (1c), the control function g and the
surface tension force μκn induces the jump of σ(u, p)n across Γ(t), and the response of the surrounding
fluid is the trace of the velocity field on the interface Γ(t), governing the time evolution of the latter via
the time derivative of X(·, t). Recall that mapping X(·, t) determines the interface Γ(t), and therefore also
the domains Ω±(t) in which the Stokes equations are set, as well as the mean curvature that satisfies the
relation κn = ΔΓ(t)Id, involving the Laplace-Beltrami operator. Thus system (1) couples in a nonlinear
manner the geometry given by X(·, t) and the state variables of the fluid, namely (u±, p±).

Existence of solutions for such a model in the context of two fluids separated by a closed free interface
has been studied by Denisova and Solonnikov [21,24], in line with prior contributions [19,20,22,23,61],
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based on the work of Rivkind [54–57]. More recently Prüss and Simonett revisited wellposedness questions
in the context of the Lp-maximal regularity [46–48], addressing also the case of phase transitions [49–51].
Modeling aspects, leading to the transmission equations on Γ(t), were first introduced in [58], as far as we
know. Addressing advanced wellposedness questions for systems of type (1) can be a difficult task, as for
example global existence of solutions for the Navier-Stokes model is still an open problem (see for example
[28] dealing with the notion of varifold solutions). We refer to [25] for an exploration in this direction.
Note that in this article the equality of velocities in (1c) which governs the time evolution of the interface
will be treated as Dirichlet-type boundary conditions, but we could also represent the flow of surfaces Γ(t)
via the Peskin formulation [45], the so-called immersed boundary method, which consists in writing this
equality as an integral supported by a delta function. In this fashion, recent wellposedness contributions
were provided in [31,33,34,44,59]. At low Reynolds number, namely for the Stokes model, let us mention
the recent contributions [41,42]. Let us also mention that stability questions were addressed in [32,67]. In
the present article we will only be interested in the stabilizability question, and will address wellposedness
only for the linearized system as well as for the feedback-control-stabilized nonlinear system (1).

1.2. Main Result

Note that the volume enclosed by Γ(t) is constant and prescribed by the one enclosed by the reference
circle Γs, due to incompressibility. Since any circle of the same volume, strictly included inside Ω, is a
stationary state (see Lemma 2.1), we can decide to stabilize system (1) around any of these circles, and
thus stabilization around the sphere is understood up to elements of the following space

CΓs
=

{
Xc ∈ H2(Γs) such that Xc(Γs) ⊂ Ω̊ is a circle of the same radius as Γs

}
.

The initial configuration Γ0 is represented via the deformation X0 of Γs, so that Γ0 = X0(Γs). Since we
need smallness assumptions on the data, in particular X0, in practice we can choose Xc ∈ CΓs

such that
‖X0 − Xc‖H2(Γs) is minimal, for example by restricting CΓs

to translations. We refer to Remark 2.1 in
Sect. 2.2 for further comments. This amounts to say that Γ0 is close to a circle of the same radius as Γs.
The main result of the present article is Theorem 1.1:

Theorem 1.1. Choose Xc ∈ CΓs
. Let be X0 ∈ H2(Γs)/R2 and f± = f|Ω±(t) such that f ∈ L2(0,∞;L2(Ω)).

For all λ > 0, there exists a finite-dimensional linear operator Kλ, depending only on λ, Γs, ν and μ,
such that if the quantities ‖X0 − Xc‖H2(Γs) and ‖eλtf‖L2(0,∞;L2(Ω)) are small enough, then the solution
of system (1) with

g =
(
(detg)−1/2

(
divΓs

(
(τs ⊗ τs)∇Γs

(X − Xc)
)

+ Kλ∇Γs
(X − Xc)

)) ◦ X−1

satisfies
∥
∥eλt(X − Xc)

∥
∥

L2(0,∞;H5/2(Γs)/R2)∩H1(0,∞;H3/2(Γs)/R2)
≤ C‖X0 − Xc‖H2(Γs),

Where τs denotes the tangent vector of Γs, C > 0 is a constant, and g denotes the metric tensor of Γ(t).

This result implies the asymptotic convergence towards a stationary state corresponding to an immo-
bile circle, up to a translation in R

2. Note that in the choice of g, we need two different operators, one
explicit, namely divΓs

(
(τs ⊗ τs)∇Γs

(X −Xc)
)
, and one of finite dimension. Both deal with the tangential

derivative of X − Xc. This feedback stabilization result is in line with many others obtained for other
fluid–structure models, for example [13,14,53]. But as far as we know, there are very few mathemati-
cal contributions that address control-related questions for models involving surface tension forces: The
models considered in [2,8,11,18,30] deal with free boundary problems, that do not involve jump condi-
tions like in (1c). However, other non-mathematical references explain the practical realization of surface
tension controls on a small scale [12,52].
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1.3. Method

Like in [13,14,53], our method is based on the feedback stabilization of the linearized system. For deriving
the latter, we first need to rewrite system (1) in cylindrical domains, in order to uncouple the fluid domains
and the state variables, in particular the deformation X. Since this surface deformation is initially defined
on Γs only, we need to define a suitable extension to the whole domain, which leads us to study the
non-trivial question of extension of diffeomorphisms from boundaries. This is realized in Sect. 3.1, and
the corresponding proof relies on recent results on the harmonic extensions of diffeomorphisms (see
Appendix A.1).

Concerning the model, for the sake of simplicity, in the fluid domain we choose to consider the linear
stationary Stokes system, which corresponds to a low Reynolds number fluid. Considering fluid models at
average or high Reynolds number would introduce other difficulties. For example, in [16,17] the authors
consider the Euler system, and existence of solutions is obtained with high-order energy estimates, without
any operator formulation that could be used for designing a possible feedback operator. On the other
hand, addressing the Navier–Stokes system consists classically in deriving an operator formulation of the
linearized system, involving the non-stationary Stokes system, for which a lifting method is used. For
the present model, based on jump conditions, it is not clear how a lifting method would enable us to
derive an operator formulation. Still in the case of the non-stationary Stokes equations with transmission
conditions, the respective authors of [47] and [21] first reduced the interface to a straight line, and derived
existence and uniqueness results via pseudo-differential calculus techniques, which lead to a space-time
operator for describing the solution. In practice, such approaches can not be used in a infinite-horizon
stabilization problem, moreover dealing with general surfaces. Further, the unique continuation argument
used in our case for obtaining approximate controllability and stabilizability of the linearized system does
not apply to the case of the non-stationary Stokes system, as the latter would necessitate taking into
consideration zeros of spherical harmonics, leading to difficulties that go beyond the scope of this article.

Therefore we adopt the stationary Stokes equations, as we prefer to focus on the time-evolution of the
interface displacement, more specifically an operator formulation that involves the time derivative of the
interface displacement only. For the linearized system, involving the Stokes system in time-independent
domains, we describe the solution via a stationary Poincaré-Steklov operator denoted by PΓs

, of Neumann-
to-Dirichlet type, mapping the different transmission conditions. The existence of this operator is obtained
via the Ladyzhenskaya-Babuška-Brezzi condition. Next the operator formulation for time-evolution of the
interface displacement is obtained, involving PΓs

, as follows

∂Z

∂t
− μPΓs

(divΓs
∇ns

Γs
Z) = PΓs

G on Γs × (0,∞), Z(·, 0) = X0 − Id on Γs,

where Z = X − Id represents the displacement of the interface, ∇ns

Γs
:= (ns ⊗ ns)∇Γs

, and G rep-
resents a control function to be chosen in a feedback form. Since ∇ns

Γs
is not coercive (see Sect. 2.3),

we define a first feedback operator as μdivΓs
∇τs

Γs
Z, where ∇τs

Γs
Z := (τs ⊗ τs)∇Γs

Z, so that Z �→
−μdivΓs

∇ns

Γs
Z − μdivΓs

∇τs

Γs
Z = −ΔΓs

Z is coercive. This operator is explicit, and supported on the
tangent to Γs, which is compatible with possible practical realization. The resulting operator generates
an analytic semigroup of contractions, with compact resolvent. Next we prove approximate controlla-
bility for the linear system via a unique continuation argument. Since the spectrum of the operator is
discrete, the number of unstable modes is of finite number, and thus we can reduce the problem to a
finite-dimensional control problem where approximate controllability implies stabilizability by a finite-
dimensional feedback operator satisfying a Riccati equation. This feedback operator is re-used for defining
another control function that stabilizes locally the nonlinear system, via a fixed-point argument, provided
that the perturbations of the steady state are sufficiently small.

One of the main reasons why we restricted our study to dimension 2 is due to theoretical difficulties
that arise in dimension 3 when trying to extend diffeomorphisms. Another reason lies in the fact that
the linear evolution equation above, involving the operator ∇ns

Γs
, would be a priori more complex in

dimension 3. All these reasons are explained in Sect. 7. Nevertheless, the methodology adopted in the
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present article for designing in practice the feedback operator is still valid in dimension 3. Throughout
the paper we try to keep as much as possible a formalism that is not restricted to dimension 2.

The paper is organized as follows: Notation and functional spaces are defined in Sect. 2. Comments
and important properties of the model are described in Sect. 2.2. A change of variable is introduced in
Sect. 3.1, enabling us to rewrite in Sect. 3.2 the main system in time-independent domains. Section 4 is
devoted to the study of the corresponding linearized system, where in particular in Sect. 4.1 we define
operator PΓs

, leading in Sect. 4.2 to an operator formulation. In Sect. 5 we design a linear feedback
operator that stabilizes the linear system. In Sect. 6 we deduce another feedback operator that stabilizes
the nonlinear system, and thus prove the main result. Questions related with the extension to dimension 3
of the present work are posed in Sect. 7. Finally, technical proofs of intermediate results are given in the
Appendix.

2. Functional Setting and Preliminaries

2.1. Function Spaces and Notation

Denote by L2, Hs and Wk,p the standard Lebesgue/Sobolev spaces of real-valued functions, and their
multi-dimensional versions for d = 2 as follows:

L2(Ω±
s ) = [L2(Ω±

s )]d, L
2(Ω±

s ) = [L2(Ω±
s )]d×d, L2(Γs) = [L2(Γs)]d×(d−1).

The notation L2(Γs) applies when considering for example tangential gradients on Γs. Naturally we trans-
pose the same type of notation for other types of spaces and domains. Recall the notation H−1/2(Γs) =
H1/2(Γs)′. For matrix fields A, B of R2×2 we recall the inner product A : B = trace(AT B) and the cor-
responding Euclidean norm satisfies |AB|R2×2 ≤ |A|R2×2 |B|R2×2 . We will denote Sym(A) = 1

2 (A + AT ).
Denote by cof(A) the cofactor matrix of any matrix field A, and note that in dimension 2 the mapping
A �→ cof(A) is linear. Given two vectors a and b of R2, the tensor product a ⊗ b denotes the matrix of
R

2×2 defined by (a ⊗ b)ij = aibj .
For 0 < T ≤ ∞, the displacements Z = X − Id of Γs will be considered in the following space

ZT (Γs) := L2(0, T ;H5/2(Γs)/R2) ∩ H1(0, T ;H3/2(Γs)/R2),

where quotient spaces have been introduced for considering displacements Z up to a constant of R2. This
is equivalent to consider deformations X = Z + Id up to translations of R2. Note that the translations of
R

2 are also elements of the space CΓs
. For any Banach space B and subset I ⊂ B, we define ‖Z‖B/I =

inf
ZI∈I

‖Z − ZI‖B . Subsequently, because of (1c), we will consider the velocity/pressure variables in the

respective spaces

UT (Ω+
s ) :=

{
u ∈ L2(0, T ;H2(Ω±

s )) | u|∂Ω = 0
}

,
UT (Ω−

s ) := L2(0, T ;H2(Ω−
s )), QT (Ω±

s ) := L2(0, T ; H1(Ω±
s )/R).

We endow the spaces UT (Ω±
s ) with the classical norms, and QT (Ω±

s ) with ‖p±‖QT (Ω±
s ) :=

‖∇p±‖L2(0,T ;L2(Ω±
s )). Note that the pressures in QT (Ω±

s ) are determined up to a constant. Actually
these constants are the residual static pressures p±

s corresponding to the stationary state. We refer to
Lemma 2.1 for more details. Still for 0 < T ≤ ∞, the data will be considered in the following spaces

FT (Ω±
s ) := L2(0, T ;L2(Ω±

s )), GT (Γs) := L2(0, T ;H1/2(Γs)), Z0(Γs) := H2(Γs)/R2.

Note that Z0(Γs) is the trace space of ZT (Γs), and we recall that the following continuous embedding
holds:

Z∞(Γs) ↪→ Cb([0,∞);H2(Γs)).

The interest of this regularity framework is that we can define extensions X̃ of mappings X that are
continuous in time with values in H5/2(Ω±

s ) ↪→ C1(Ω±
s ). More specifically, extensions X̃ of X will be
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considered in the following space:

X∞(Ω±
s ) := L∞(0,∞;H5/2(Ω±

s )).

Besides, the extensions X̃ are such that ∇X̃ ∈ L∞(0,∞;H3/2(Ω±
s )). The same property holds for the

inverse of ∇X̃ (Corollary 3.1), which is convenient for deriving Lipschitz estimates when stabilizing the
nonlinear system in Sect. 6, as the space H

3/2(Ω±
s ) is an algebra (see [35, Proposition B.1, page 283]). In

the same fashion, the space H
1(Γs) is also an algebra.

Recall the Petree-Tartar lemma [27, Lemma A.38 page 469], that we will use several times.

Lemma (Petree-Tartar lemma). Let B1, B2 and B3 be Banach spaces. Let A ∈ L(B1, B2) be an injective
operator, and let C ∈ L(B1, B3) be a compact operator. Assume that there exists a positive constant1

C > 0 such that for all ϕ ∈ B1 we have

‖ϕ‖B1 ≤ C (‖Aϕ‖B2 + ‖Cϕ‖B3) .

Then there exists C > 0 such that
‖ϕ‖B1 ≤ C‖Aϕ‖B2

for all ϕ ∈ B1.

2.2. On the Surface Tension Model and the Stationary States

The surface tension force is generated by the mean curvature vector of the surface Γ(t). It is related to
the Laplace-Beltrami operator via the following relation (see [68, p. 151, Exercise 2]):

κn = ΔΓ(t)Id.

Using [1, Theorem 2.6], the following energy estimate holds, showing that the surface tension force derives
from a potential energy quantified by the area of Γ(t):

μ
d

dt
|Γ(t)| + 2ν

(
‖ε(u+)‖2

L2(Ω+(t)) + ‖ε(u−)‖2
L2(Ω−(t))

)
= 〈f+, u+〉L2(Ω+(t)) + 〈f−, u−〉L2(Ω−(t)) + 〈g, u±〉L2(Γ(t)).

This energy is dissipated with the help of the viscosity terms. From [66, page 18], the kernel of ε is
reduced to the tangent space of the special Euclidean group SE(2), namely the functions of type u±(x) =
h± + ω±x⊥, where h± ∈ R

2 and ω± ∈ R are constant. Using u+ = 0 on ∂Ω, we deduce h+ = 0 and
ω+ = 0, which also implies h− = 0 and ω− = 0 when we have u+ = u− on Γ(t). Therefore, the first
Korn’s inequality combined with the Rellich-Kondrachov theorem and the Petree-Tartar lemma yields
the following general result:

Lemma 2.0. Let Ω± be any smooth subdomains of Ω split by a closed smooth curve Γ = ∂Ω− such that
Γ ⊂ Ω̊. Then, for all u± ∈ H1(Ω±) such that u+ = 0 on ∂Ω and u+ = u− on Γ, we have

‖u+‖H1(Ω+) + ‖u−‖H1(Ω−) ≤ C
(
‖ε(u+)‖2

L2(Ω+) + ‖ε(u−)‖2
L2(Ω−)

)
,

where C > 0 is independent of u±.

Since our approach is based on the study of the linearized system that involves divΓs
∇ns

Γs
(X − I) (see

Sect. 3.2), we will rather focus on the different differential operators rather than on the mean curvature.
The curve Γs is considered as a Riemannian manifold, and due to its regularity, we claim that the
trace spaces Hs(Γs) coincide with the definition of Sobolev spaces given on Riemannian manifolds [37,
section 2.2]. For a circle Γs ⊂ Ω̊ of given radius r we adopt the parameterization by arc length

Xs : [0, 2πr) � ξ �→ (r cos(ξ/r), r sin(ξ/r))T ∈ Γs ⊂ R
2.

Denoting τs the tangent vector of Γs, we have

ns ◦ Xs = (cos(ξ/r), sin(ξ/r))T
, τs ◦ Xs = (sin(ξ/r),− cos(ξ/r))T

1Throughout the paper the notation C refers to a positive constant generically independent of the different variables.
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Recall the notation for the tangential gradient ∇Γs
and the tangential divergence divΓs

. In the particular
case of a circle, with the parameterization Xs chosen above, the metric tensor gs of Γs is scalar-valued,
equal to |∇ξXs|2R2 = 1. Therefore, for all ϕ ∈ H1(Γs), these operators simply write

(∇Γs
ϕ) ◦ Xs = ∇ξ(ϕ ◦ Xs),

(divΓs
) ◦ Xs = (detgs)−1/2 ∂

∂ξ

(
(detgs)1/2(ϕ ◦ Xs)

)
= ∇ξ(ϕ ◦ Xs) = (∇Γs

ϕ) ◦ Xs.

We will still use the general notation ∇Γs
and divΓs

, for the sake of consistency with higher dimension.
Recall the Frenet-Serret formulas:

∇Γs
ns = −1

r
τs, ∇Γs

τs =
1
r
ns.

The integrals on Γs have to be understood as surface integrals. We recall the Stokes formula on smooth
manifolds without boundary, that we will use in this article only for the 1-sphere Γs. For all ϕ,ψ ∈
H1/2(Γs), we have

〈ΔΓs
ϕ,ψ〉H−1/2(Γs),H1/2(Γs) = −〈∇Γs

ϕ,∇Γs
ψ〉L2(Γs),

where we recall the definition ΔΓs
= divΓs

◦∇Γs
of the Laplace-Beltrami operator on Γs. More generally,

for all matrix field Σ ∈ H1(Γs) and vector field ϕ ∈ H1(Γs) we have

〈divΓs
Σ, ϕ〉H−1/2(Γs),H1/2(Γs) = −〈Σ,∇Γs

ϕ〉L2(Γs). (2)

We define admissible deformations, summarizing the basic assumptions we consider for mappings X,
as well as the set of admissible deformations transforming the circle Γs into another circle of the same
radius and orientation:

Definition 2.1. We say that X ∈ H2(Γs) is admissible if X is invertible, orientation-preserving and
volume-preserving, that is that the volume contained by Γs is the same as the one contained by X(Γs),
and if X(Γs) ⊂ Ω̊. Further, we define

CΓs
=

{
X ∈ H2(Γs) | X(Γs) ⊂ Ω̊ is a circle of the same radius as Γs

}
.

The relation X(Γs) ⊂ Ω̊ is the condition of non-contact with the outer boundary, that is X(Γs)∩∂Ω = ∅.

Remark 2.1. Note that any volume-preserving deformation X ∈ H2(Γs) that is close enough to the iden-
tity and volume-preserving is admissible. Relaxing the non-contact condition, remark that the space CΓs

contains elements of the special Euclidean group SE(2), made of proper rigid transformations XR, namely
direct isometries, composed of translations and rotations, as XR : R2 � y �→ h + Ry ∈ R

2, where h ∈ R
2

and R is an orthogonal matrix with detR = 1. The space CΓs
also includes the group Diff+(Γs) of

direct diffeomorphisms of the circle Γs. We claim that CΓs
can be generated by composing elements

of SE(2) with elements of Diff(Γs). Finally, we note that we can obtain the circle X(Γs) globally—as
geometric object—from Γs simply by composing the latter by a translation of SE(2). But for the sake of
completeness we introduce CΓs

as above for describing all the possible stationary states.

We derive a series of lemmas, that will be used several times throughout the paper. The first one
characterizes the stationary states, given by system (4):

Lemma 2.1. Let be subdomains Ω± ⊂ Ω like in Lemma 2.0. If g ∈ H−1/2(Γ) is the right-hand-side of the
following system ⎧

⎨

⎩

−div σ(u±, p±) = 0 and div u± = 0 in Ω±,
u+ = 0 on ∂Ω,

u± = 0 and − [σ(u, p)] n = g on Γ,
(3)

then necessarily g = cn, where c is a constant equal to the difference [p] of constant pressures. In particular,
the admissible mappings X such that X(Γs) ⊂ Ω̊ splits Ω into two subdomains denoted by Ω±

X(Γs) = Ω±,
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like in Lemma 2.0, and satisfying
⎧
⎨

⎩

−div σ(u±, p±) = 0 and div u± = 0 in Ω±
X(Γs),

u+ = 0 on ∂Ω,
u± = 0 and − [σ(u, p)] n = μΔX(Γs)Id on X(Γs),

(4)

describe the set CΓs
. That is, X(Γs) is a circle of the same radius r > 0 as Γs. The velocities u± are

equal to zero everywhere, and the pressures p± are constant, equal to the static pressures p±
s such that

[ps]ns = μΔX(Γs)Id = κsns (namely the so-called Young-Laplace equation), where κs = −1/r < 0 is the
curvature of X(Γs), implying that p−

s > p+
s .

Proof. Taking the scalar product of the first equation of (3), and integrating by parts leads to
‖ε(u±)‖

L2(Ω±
X(Γs))

= 0, and from Lemma 2.0, to u± = 0 in H1(Ω±). Then we also deduce ∇p± = 0

in the first equation, that yields that p± are both constant, equal to the static pressures p±
s . Thus

g = [2νε(u) − pI] n = − [ps] n, where [ps] is a constant, which completes the first part of the proof. Next,
using this result for system (4) with Ω± = Ω±

X(Γs), Γ = ΓX(Γs) and g = μΔX(Γs)Id, the constant [p]
obtained previously corresponds to [p] n = μΔX(Γs)Id. Actually μΔX(Γs)Id = κn, where κ, namely the
(mean) curvature of X(Γs), is constant, equal to κs = −1/r. Therefore X(Γs) is a circle, and since X
is assumed to be admissible, this condition yields that X(Γs) and Γs have the same radius r, and so
the same mean curvature −1/r. Therefore X lies necessarily in CΓs

, and conversely, which completes the
proof. �

The stationary states are then obtained from the reference circle Γs via transformations of CΓs
. The

deformations X of Γs will be then compared to an element Xc ∈ CΓs
, and the corresponding displacements

writes X − Xc. For the sake of simplicity we will rather consider X − Id in what follows, by keeping in
mind that Id is to be replaced by any given Xc ∈ CΓs

. From there, we will use the notation

Z = X − Id

for the displacements, keeping in mind that ultimately we shall consider Z = X − Xc with Xc ∈ CΓs
.

Next we introduce the following differential operator

∇ns

Γs
= (ns ⊗ ns)∇Γs

.

Operator ∇ns

Γs
appears in the linearized system (22) (see Sect. 3.2 for its derivation). Note that the matrix

field ns ⊗ ns is never invertible.

2.3. The Kernel of ∇ns

Γs
and the Lack of Coercivity

The operator divΓs
∇ns

Γs
appears in the linearization of (κn)◦X (see Sect. 3.2). The description of the kernel

of ∇Γs
is then central for the methodology we adopted, namely the wellposedness of the corresponding

linearized system (Sect. 4), and the unique continuation argument (Sect. 5.1). Unfortunately there are
non-trivial mappings X = Z+Id that are smooth, orientation-preserving, volume-preserving, transforming
the circle into a Jordan curve, that can be chosen arbitrarily close to the identity, and such that ∇ns

Γs
Z = 0.

Indeed, ∇ns

Γs
Z = (∇Γs

Z · ns)ns = 0 implies that ∇Γs
Z is tangent to Γs. There exists a function ξ �→ α(ξ)

such that ∇Γs
Z = ατs. Decompose α with its Fourier series:

α(ξ) =
∞∑

k=2

(
a1,k cos(kξ/r) + a2,k sin(kξ/r)

)
.

The modes k = 0 and k = 1 are not considered, as they introduce constants that are necessarily equal to 0,
because of the periodicity of Z, meaning that (Id + Z)(Γs) is a closed curve (Z(Xs(0)) = Z(Xs(2πr))).
Integrating the equality ∇Γs

Z = ατs leads us to

Z(Xs(ξ)) =
∞∑

k=2

1
k2 − 1

((
a1,k cos(kξ/r) + a2,k sin(kξ/r)

)
ns +

( − a2,kk cos(kξ/r) + a1,kk sin(kξ/r)
)
τs

)
,
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Fig. 2. Different deformations X(Γs) of the circle such that ∇ns
Γs

(X − Id) = 0

up to a constant that corresponds to a translation. Several examples of such displacements are represented
in Fig. 2 below, corresponding to k ∈ {2, 3, 4, 5, 6, 7} and coefficients ak, bk ∈ {0, 1}.

In order to define a linear operator whose the kernel is reduced to a trivial set, we need to regularize
the operator divΓs

∇ns

Γs
.

2.4. Regularization

Instead of considering μdivΓs
∇ns

Γs
alone, we add a regularizing term, namely

μdivΓs
∇τs

Γs
= μdivΓs

◦(
(τs ⊗ τs)∇Γs

)
,

so that the linear system studied in Sect. 4 involves the following operator

Z �→ −μdivΓs
∇ns

Γs
Z − μdivΓs

∇τs

Γs
Z = −μdivΓs

∇Γs
Z = −μΔΓs

Z.

For the Laplace-Beltrami operator −ΔΓs
we recall a rigidity result combined with G̊arding-type inequal-

ities.

Proposition 2.1. Assume that Z ∈ H�(Γs) with � ≥ 1 satisfies ΔΓs
Z = 0. Then Z is a constant of R2.

Moreover, the following estimates hold:

‖Z‖H1(Γs)/R2 ≤ C‖∇Γs
Z‖L2(Γs) for all Z ∈ H1(Γs), (5)

‖Z‖H5/2(Γs)/R2 ≤ C‖∇Γs
Z‖H3/2(Γs) for all Z ∈ H5/2(Γs), (6)

‖Z‖H3/2(Γs)/R2 ≤ C‖∇Γs
Z‖H1/2(Γs) for all Z ∈ H3/2(Γs). (7)

Furthermore, if Z ∈ H2(Γs), the following estimate holds:

‖Z‖H2(Γs)/R2 ≤ C‖ΔΓs
Z‖L2(Γs). (8)

Proof. See for example [37, section 2.8]. Estimate (5) is deduced from the Poincaré inequality combined
with the Petree-Tartar lemma. The same inequality applies to high-order derivatives of Z, and conse-
quently estimates (6)–(7) are deduced by interpolation. Finally, estimate (8) is classically obtained by
using Fourier series on the circle. �

We deduce a unique continuation result that is used for proving Proposition 5.1.

Lemma 2.2. The mappings X ∈ H1(Γs) satisfying the following system
⎧
⎨

⎩

−div σ(u±, p±) = 0 and div u± = 0 in Ω±
s ,

u+ = 0 on ∂Ω,
u± = 0 and − [σ(u, p)] n = μΔΓs

(X − Id) on Γs,
(9)

are translations of R2.

Proof. By using Lemma 2.1 with Ω± = Ω±
s , Γ = Γs and g = μΔΓs

(X−Id), we deduce ΔΓs
(X−Id) = cns,

where c is a constant equal to the difference of constant pressures. Recall that the static pressures
introduced in Lemma 2.1 satisfy μΔΓs

Id = [ps]ns. Therefore we can assume that the constant pressures
mentioned above are such that c = 0, and so ΔΓs

(X − Id) = 0. Since Γs is a compact manifold, it follows
that X − Id is a constant, and X is a translation. �



JMFM Feedback Stabilization of a Two-Fluid Surface Tension Page 11 of 33     7 

Remark 2.2. In the proof of Lemma 2.2, another argument for deducing c = 0 would have consisted in
restricting the deformation X to volume-preserving deformations. Since ns = −rΔΓs

Id, we would have
deduced ΔΓs

(X − Id+ crId) = 0, implying that X +(cr −1)Id is a constant. Assuming that X is volume-
preserving then leads to c = 0. This also amounts saying that the difference of static pressures remains
the same after deformation by X.

The third lemma is an energy estimate that holds for an unsteady linear system:

Lemma 2.3. Let be T > 0 and λ > 0. Assume that Z satisfies
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−div σ(u±, p±) = 0 and div u± = 0 in Ω±
s × (0, T ),

u+ = 0 on ∂Ω × (0, T ),

u± =
∂Z

∂t
− λZ and − [σ(u, p)] n = μΔΓs

Z + g on Γs × (0, T ),

Z(·, 0) = Z0 on Γs.

(10)

Then the following identity holds almost everywhere in (0, T ):

μ

2
∂

∂t
‖∇Γs

Z‖2
L2(Γs) + 2ν

(
‖ε(u+)‖2

L2(Ω+
s )

+ ‖ε(u−)‖2
L2(Ω−

s )

)
= λ‖∇Γs

Z‖2
L2(Γs) +

〈
g;u±〉

L2(Γs)
. (11)

In particular, if g = 0 and Z0 = 0 in H1(Γs), then Z ≡ 0 up to a constant of R2.

Proof. Taking the scalar product of the first equation of (10) by u±, and integrating by parts yields

2ν
(
‖ε(u+)‖2

L2(Ω+
s )

+ ‖ε(u−)‖2
L2(Ω−

s )

)
= μ

〈
∂Z

∂t
− λZ,ΔΓs

Z

〉

L2(Γs)

+
〈
g, u±〉

L2(Γs)
.

The Stokes formula (2) shows that div∗
Γs

= −∇Γs
, so we deduce

〈
∂Z

∂t
− λZ, μΔΓs

Z

〉

L2(Γs)

= −
〈

∂∇Γs
Z

∂t
− λ∇Γs

Z, μ∇Γs
Z

〉

L2(Γs)

= −μ

2
∂

∂t
‖∇Γs

Z‖2
L2(Γs) + λ‖∇Γs

Z‖2
L2(Γs),

and thus (11) follows. By integrating in time this identity, with g = 0, we obtain ‖∇Γs
Z‖2

L2(Γs) ≤
‖∇Γs

Z0‖2
L2(Γs) = 0, which yields ∇Γs

Z = 0, and Proposition 2.1 enables us to complete the proof. �

Note that the energy estimate (11) is also valid for any geometric configuration satisfying the non-
contact condition, but we will use it only for Γs.

3. Extension of Diffeomorphisms and Change of Variables

In order to rewrite (1) in time-independent domains, we need to define in the whole domain Ω a change
of variable that coincides with X on Γs. Therefore the question of the extension of X in Ω±

s arises.

3.1. Extension of Diffeomorphisms

Let us define an extension of X which inherits its regularity properties. We state the following result:

Proposition 3.1. Let be X − Id ∈ Z∞(Γs) such that for all t ≥ 0 the mapping X(·, t) is a diffeomorphism
from Γs onto Γ(t). There exists a mapping X̃ defined in Ω × (0,∞) such that for all t ≥ 0 we have
X̃(·, t)|Ω±

s
∈ H5/2(Ω±

s ), X̃|∂Ω = Id, X̃|Γs
= X, X̃(·, t)|Ω−

s
is a diffeomorphism from Ω−

s onto Ω−(t), and
that satisfies

‖X̃ − Id‖X∞(Ω±
s ) ≤ C‖X − Id‖Z∞(Γs), (12)
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where the constant C > 0 is independent of X. Furthermore, given X1 − Id, X2 − Id ∈ Z∞(Γs), the
respective extensions X̃1 and X̃2 so obtained satisfy

‖X̃1 − X̃2‖X∞(Ω±
s ) ≤ C‖X1 − X2‖Z∞(Γs). (13)

The H5/2(Ω±
s ) regularity implies in particular that for every t ≥ 0 the mapping X̃(·, t)|Ω±

s
is of class

C1 on Ω±
s . The proof of Proposition 3.1 combines different results that are not related to the main result

of the paper. Therefore it is given in Appendix A.1. Note that the domains Ω±(t) defined as the two
connected components of Ω\Γ(t) are also described as Ω±(t) = X̃(Ω±

s , t), due to conexity. By choosing
X − Id small enough, we can define a local inverse for X̃|Ω+

s
(·, t). We deduce regularity for the inverse of

the Jacobian matrix of X̃(·, t)|Ω±
s
.

Corollary 3.1. Given the assumptions of Proposition 3.1, the inverse Ỹ (·, t) of mapping X̃(·, t)|Ω±
s
, so

that

X̃(Ỹ (x, t), t) = x, for x ∈ Ω±(t), t ∈ (0,∞), Ỹ (X̃(y, t), t) = y for (y, t) ∈ Ω±
s × (0,∞),

satisfies the following estimate, provided that ‖X − Id‖Z∞(Γs) is small enough:

‖∇Ỹ (X̃) − I‖L∞(0,∞;H3/2(Ω±
s )) ≤ C‖X − Id‖Z∞(Γs). (14)

Denoting by Ỹ1 and Ỹ2 the respective inverses of X̃1 and X̃2, extensions of X1 and X2 respectively, we
have

‖∇Ỹ1(X̃1) − ∇Ỹ2(X̃2)‖L∞(0,∞;H3/2(Ω±
s )) ≤ C‖X1 − X2‖Z∞(Γs), (15)

provided that ‖X1 − Id‖Z∞(Γs) and ‖X2 − Id‖Z∞(Γs) are small enough.

Proof. Even if X̃|Ω+
s
(·, t) is not globally invertible, we still use the notation ∇Ỹ (X̃) for the inverse of

∇X̃, for the sake of simplicity. Recall that H
3/2(Ω±

s ) is an algebra. The identity ∇Ỹ (X̃) − I = (I −
∇X̃)(∇Ỹ (X̃) − I) + (I − ∇X̃) yields

‖∇Ỹ (X̃) − I‖L∞(0,∞;H3/2(Ω±
s )) ≤

‖∇X̃ − I‖L∞(0,∞;H3/2(Ω±
s ))

1 − C‖∇X̃ − I‖L∞(0,∞;H3/2(Ω±
s ))

which, combined with (12), implies (14). Further, the identity

∇Ỹ1(X̃1) − ∇Ỹ2(X̃2) =
(∇Ỹ1(X̃1) − ∇Ỹ2(X̃2)

)
(I − ∇X̃1) − (∇Ỹ2(X̃2) − I)(∇X̃1 − ∇X̃2) − (∇X̃1 − ∇X̃2)

enables us to derive (15) similarly, by using (12) for controlling (I−∇X̃1), (14) for controlling (∇Ỹ2(X̃2)−
I), and (13) for controlling (∇X̃1 − ∇X̃2), completing the proof. �

Remark 3.1. In case we would consider stabilizing X around some Xc ∈ CΓs
, instead of Id, we would need

to define an extension X̃c ∈ H5/2(Ω±
s ) of Xc ∈ H2(Γs). Such an extension is provided by Proposition A.1

in Appendix A.1, and the Lipschitz estimates (12) and (14) would then be

‖X̃ − X̃c‖X∞(Ω±
s ) ≤ C‖X − Xc‖Z∞(Γs), ‖∇Ỹ (X̃) − (∇X̃c)−1‖L∞(0,∞;H3/2(Ω±

s )) ≤ C‖X − Xc‖Z∞(Γs),

respectively.

We now have the tools for rewriting system (1) in cylindrical domains. The Lipschitz estimates of
Proposition 3.1 and Corollary 3.1 are used in Sect. 6.
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3.2. Change of Variables and System Transformation

We introduce the change of variables

ũ±(y, t) := u±(X̃(y, t), t), p̃±(y, t) := p±(X̃(y, t), t), (y, t) ∈ Ω±
s × (0,∞),

u±(x, t) = ũ±(Ỹ (x, t), t), p±(x, t) = p̃±(Ỹ (x, t), t), (x, t) ∈
⋃

t∈(0,∞)

Ω±(t) × {t},

f̃±(y, t) := (det∇X̃(y, t))f±(X̃(y, t), t), (y, t) ∈ Ω±
s × (0,∞),

g̃(y, t) := |cof(∇X̃(y, t))ns| g(X(y, t), t), (y, t) ∈ Γs × (0,∞).

Implicitly, on Γs, ∇X̃ refers to ∇X̃−. Composing system (1) by X̃ and using the Piola’s identity, we
obtain

−div
((

σ(u±, p±) ◦ X̃
)

cof(∇X̃)
)

= f̃± and div
(
cof(∇X̃)T ũ

)
= 0 in Ω±

s × (0,∞),
ũ+ = 0 on ∂Ω × (0,∞),

ũ± =
∂X

∂t
and − [(σ(u, p) ◦ X)] cof∇X̃ns = μ|cof∇X̃ns|(ΔΓ(t)Id) ◦ X + g̃ on Γs × (0,∞),

X(·, 0) = X0 on Γs,

(16)

where

σ(u, p) ◦ X̃ = ν Sym(∇ũ∇Ỹ (X̃)) − p̃ I =: σ̃(ũ, p̃),

and where we used n ◦ X = cof∇X̃ns/|cof∇X̃ns|. Let us develop (ΔΓ(t)Id) ◦ X. The parameterization
Xs : [0, 2πr) � ξ �→ Xs(ξ) ∈ Γs of Γs introduced in Sect. 2.2 enables us to define X ◦ Xs as a
parameterization of Γ(t). We denote by gs, g(t) the metric tensors of Γs and Γ(t), respectively. We have,
in local coordinates, and using the Einstein notation2:

(ΔΓ(t)Id)i ◦ X ◦ Xs = (detg(t))−1/2 ∂

∂ξj

(
(detg(t))1/2 ∂(X ◦ Xs)i

∂ξk
(g(t)−1)kj

)
. (17)

Volume forms considerations yield

(detg(t))1/2 = |cof∇X̃ns|(detgs)1/2

(see for instance [7, Lemma 6.23, p. 135]), and when X − Id is small, we write

g(t) = ∇ξ(X ◦ Xs)T ∇ξ(X ◦ Xs) = gs + ∇ξ(X ◦ Xs)T ∇ξ(X ◦ Xs) − ∇ξX
T
s ∇ξXs

= gs + 2Sym
(∇ξX

T
s ∇ξ((X − Id) ◦ Xs)

)
+ O(‖∇X̃ − I‖2

H1(Γs)),
g(t)−1 = g−1

s − 2 g−1
s Sym

(∇ξX
T
s ∇ξ((X − Id) ◦ Xs)

)
g−1

s + O(‖∇X̃ − I‖2
H1(Γs))

= g−1
s − 2 g−1

s

(∇ξX
T
s ∇ξ((X − Id) ◦ Xs)

)
g−1

s + O(‖∇X̃ − I‖2
H1(Γs))

detg(t) = detgs + 2 cofgs : Sym
(∇ξX

T
s ∇ξ((X − Id) ◦ Xs)

)
+ O(‖∇X̃ − I‖2

H1(Γs))
= (detgs)

(
1 + 2 g−1

s :
(∇ξX

T
s ∇ξ((X − Id) ◦ Xs)

))
+ O(‖∇X̃ − I‖2

H1(Γs)),
(detg(t))1/2 = (detgs)1/2

(
1 + g−1

s :
(∇ξX

T
s ∇ξ((X − Id) ◦ Xs)

))
+ O(‖∇X̃ − I‖2

H1(Γs)),
∂(X ◦ Xs)i

∂ξk
= (∇ξXs)ik +

∂((X − Id) ◦ Xs)i

∂ξk
,

where we have used the symmetry of gs and g(t), and where the Landau’s notation O applies when
∇X̃ −I is small in the algebra H

1(Γs). Further, let us make some simplifications provided by dimension 2,
using the parameterizaion by arc length given in Sect. 2.2: The metric tensor gs is scalar valued, equal
to |∇ξXs|2 = 1, and the tangent space of Γs is made of the tangent vectors τs such that τs ◦ Xs =

2Even if in our case g(t) is scalar-valued, we still keep the matrix formulation for generalizability to higher dimension.
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−∇ξXs/|∇ξXs| = −∇ξXs. We then have

g(t)−1 = g−1
s − 2

〈∇ξXs,∇ξ((X − Id) ◦ Xs)〉R2

|∇ξXs|2 + O(‖∇X̃ − I‖2
H1(Γs))

= g−1
s + 2〈τs ◦ Xs,∇ξ((X − Id) ◦ Xs)〉R2 + O(‖∇X̃ − I‖2

H1(Γs)),

(detg(t))1/2 = (detgs)1/2

(
1 +

〈∇ξXs,∇ξ((X − Id) ◦ Xs)〉R2

|∇ξXs|2
)

+ O(‖∇X̃ − I‖2
H1(Γs))

= (detgs)1/2 (1 − 〈τs ◦ Xs,∇ξ((X − Id) ◦ Xs)〉R2) + O(‖∇X̃ − I‖2
H1(Γs)),

∂(X ◦ Xs)i

∂ξk
= −(τs ◦ Xs)i + ∇ξ((X − Id) ◦ Xs)i.

Linearizing (17), we deduce

(ΔΓ(t)Id) ◦ (X ◦ Xs) = |cof∇X̃ns|−1
(
ΔΓsId + divΓs(∇Γs(X − Id))

) ◦ Xs

−|cof∇X̃ns|−1(detgs)
−1/2 ∂

∂ξ

(
(detgs)

1/2((τs ⊗ τs) ◦ Xs

)∇ξ((X − Id) ◦ Xs)
))

+O(‖∇X̃ − I‖2
H1(Γs)

)

= |cof∇X̃ns|−1
(
ΔΓsId + divΓs(∇Γs(X − Id)) − divΓs((τs ⊗ τs)∇Γs(X − Id))

)
◦ Xs

+O(‖∇X̃ − I‖2
H1(Γs)

),

(ΔΓ(t)Id) ◦ X = |cof∇X̃ns|−1
(
ΔΓsId + divΓs ((ns ⊗ ns)∇Γs(X − Id))

)
+ O(‖∇X̃ − I‖2

H1(Γs)
),

as ns ⊗ns = I−τs ⊗τs is the projection operator on ns. Thus, recalling the notation ∇ns

Γs
= (ns ⊗ns)∇Γs

,
the fourth equation of (16) writes

− [σ̃(ũ, p̃)] cof∇X̃ns = μΔΓs
Id + divΓs

∇ns

Γs
(X − Id) + g̃ + O(‖∇X̃ − I‖2

H1(Γs)) on Γs × (0,∞).

The interest of (16) lies in the fact that the space domains domains Ω±
s are time-independent. The price

to pay is the nonlinear operators with respect to X that appear above. Recall that ΔΓs
Id = [ps]ns,

where p±
s are the constant static pressures introduced in Lemma 2.1. Further, we introduce the following

unknowns:
û± = eλtũ±, p̂± = eλt(p̃± − p±

s ), f̂± = eλtf̃ in Ω±
s × (0,∞),

Ẑ(·, t) = eλt(X(·, t) − Id), ĝ = eλtg̃ on Γs × (0,∞).
(18)

The idea here is to find a control ĝ that will make the variables (û±, p̂±, Ẑ) bounded, so that the original
unknwon will decrease exponentially with λ as decay rate. The system satisfied by (û±, p̂±, X̂) is the
following:

−div(σ(û±, p̂±) = f̂± + F (û±, p̂±, Ẑ) and div û = div H(û±, Ẑ) in Ω±
s × (0,∞),

û+ = 0 on ∂Ω × (0,∞),

û± =
∂Ẑ

∂t
− λẐ, and − [σ(û, p̂)] ns = μdivΓs

∇ns

Γs
Ẑ + ĝ + G(û+, p̂+, û−, p̂−, Ẑ) on Γs × (0,∞),

Ẑ(·, 0) = X0 − Id on Γs,
(19)

where we have introduced

F (û±, p̂±, Ẑ) = div
(
σ̃(û±, p̂±)(cof∇X̃ − I)

)
+ 2ν div

(
Sym

(
∇û(Ỹ (X̃) − I)

))
, (20a)

G(û+, p̂+, û−, p̂−, Ẑ) = [σ̃(û, p̂)] (cof∇X̃ − I)ns + 2ν
[
Sym

(
∇û(Ỹ (X̃) − I)

)]
ns

+‖∇X̃‖H1(Γs)O(‖∇X̃ − I‖H1(Γs)), (20b)

H(û±, Ẑ) = (I − cof∇X̃)T û±. (20c)

In Sect. 6 we deduce regularity for the functions F , G and H. Note that the condition û+
|∂Ω = 0 on the

outer boundary implies that H(û+, Z)|∂Ω = 0, and so we will consider in particular H(û+, Z) ∈ U∞(Ω+
s ).
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In system (19), the linear part is on the left-hand-side, and the nonlinear part is represented by the
right-hand-sides F , G and H. Considering small data, the displacements X − Id remain small, and the
nonlinearities F , G and H too (see Sect. 6). Therefore we first study the stabilizability of the linearized
system.

4. On the Linearized System

From (19) we deduce the linearized system with (u±, p±) and Z as unknowns:

− div σ(u±, p±) = 0 and div u± = 0 in Ω±
s × (0,∞),

u+ = 0 on ∂Ω × (0,∞),

u+ = u− =
∂Z

∂t
− λZ and − [σ(u, p)] ns = μdivΓs

∇ns

Γs
Z + G on Γs × (0,∞),

Z(·, 0) = Z0 on Γs. (21)

As explained in Sect. 2.3, the operator ∇ns

Γs
is non-coercive, and we define a first feedback operator

Z �→ μdivΓs

(
(τs ⊗ τs)∇Γs

Z
)

= μdivΓs
∇τs

Γs
Z = G, such that the resulting elliptic operator in (21)

becomes
Z �→ μdivΓs

∇ns

Γs
Z + μdivΓs

∇τs

Γs
Z = divΓs

∇Γs
Z = ΔΓs

Z.

Given T ∈ (0,∞), this section is devoted to wellposedness and operator formulation for the following
linear system:

− div σ(u±, p±) = 0 and div u± = 0 in Ω±
s × (0, T ), (22a)

u+ = 0 on ∂Ω × (0, T ), (22b)

u+ = u− =
∂Z

∂t
− λZ and − [σ(u, p)] ns = μΔΓs

Z + G on Γs × (0, T ), (22c)

Z(·, 0) = Z0 on Γs. (22d)

The data are assumed to satisfy G ∈ GT (Γs) = L2(0, T ;H1/2(Γs)), Z0 ∈ Z0(Γs) = H2(Γs)/R2. Our
approach consists in writing (22) as an abstract evolution equation with Z as the only unknown. The
other unknowns (u±, p±) can be then deduced as solutions of standard Stokes problems with the Dirichlet
boundary condition of (22c).

4.1. A Poincaré-Steklov Operator

For G ∈ H1/2(Γs) given, in this subsection we are interested in the following linear transmission problem:

− div σ(u±, p±) = 0 and div u± = 0 in Ω±
s , (23a)

u+ = 0 on ∂Ω, (23b)
[u] = 0 and − [σ(u, p)] ns = G on Γs. (23c)

Following the approach of [15], the equality of velocities in (23c) leads us to introduce a boundary velocity
φ ∈ H1/2(Γs), and we obtain a weak solution of (23) as a critical point of the following Lagrangian
functional:

L(u+, p+, u−, p−, λ+, λ−, φ) = 2ν‖ε(u+)‖2
L2(Ω+

s )
+ 2ν‖ε(u−)‖2

L2(Ω−
s )

−〈p+,div u+〉L2(Ω+
s ) − 〈p−,div u−〉L2(Ω−

s )

−〈λ+, u+ − φ〉H−1/2(Γs):H1/2(Γs) − 〈λ−, u− − φ〉H−1/2(Γs):H1/2(Γs)

−〈G,φ〉H−1/2(Γs):H1/2(Γs).
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Note that the variable φ also plays the role of a multiplier for the transmission condition (23c). Let us
introduce

V+ =
{
v ∈ H1(Ω+

s ) | v|∂Ω = 0
}

, V− = H1(Ω−
s )/R2, Q± = L2(Ω±

s )/R,

W =
{

v ∈ H1/2(Γs) | 〈v, n〉L2(Γs) = 0
}

.

Relying on the Korn’s inequality and the Petree-Tartar lemma, we equip V± with the norms ‖v‖V± :=
‖ε(v)‖

L2(Ω±
s ). For the sake of brevity we denote

u = (u+, p+, u−, p−, λ+, λ−, φ), v = (v+, q+, v−, q−, μ+, μ−, ϕ),
V = V+ × Q+ × V− × Q− × W′ × W′ × W.

A weak solution of (23) satisfies the variational formulation given by the first order optimality condition
for functional L:

Find u ∈ V, such that for all v ∈ V :{ 〈σ(u±, p±), ε(v±)〉
L2(Ω±

s ) − 〈λ±, v±〉W′;W = 0, −〈q±,div u±〉L2(Ω±
s ) = 0,

−〈μ±, u± − Φ〉W′;W = 0, 〈λ+ + λ− − G,ϕ〉W′;W = 0.

(24)

By integration by parts, we easily see that at the optimality we have λ± = σ(u±, p±)n±. We rewrite the
variational problem (24) more compactly, as follows:

Find u ∈ V such that M(u; v) = G(v) ∀v ∈ V,

where M(u; v) := 2ν〈ε(u+), ε(v+)〉
L2(Ω+

s ) + 2ν〈ε(u−) : ε(v−)〉
L2(Ω−

s )

−〈p+,div v+〉L2(Ω+
s ) − 〈q+,div u+〉L2(Ω+

s ) − 〈p−,div v−〉L2(Ω−
s ) − 〈q−,div u−〉L2(Ω−

s )

−〈λ+, v+ − ϕ〉W′;W − 〈μ+, u+ − Φ〉W′;W − 〈λ−, v− − ϕ〉W′;W − 〈μ−, u− − Φ〉W′;W,
G(v) := 〈G,ϕ〉W′;W .

The existence and uniqueness of a solution for (24) is equivalent to the Ladyzhenskaya-Babuška-Brezzi
inf-sup condition. In that sense we state the following result:

Proposition 4.1. There exists a constant C > 0 such that

inf
u∈V\{0}

sup
v∈V\{0}

M(u; v)
‖u‖V‖v‖V ≥ C.

The proof of this proposition is given in Appendix A.2. The consequence of this result is the existence
and uniqueness of a weak solution for system (23).

Corollary 4.1. Assume that G ∈ W. System (23) admits a unique solution (u+, p+, u−, p−) in V+×Q+×
V− × Q−. Moreover, there exists a constant C > 0, depending only on Ω+

s and Ω−
s , such that

‖u+‖H1(Ω+
s ) + ‖p+‖L2(Ω+

s )/R + ‖u−‖H1(Ω−
s ) + ‖p−‖L2(Ω−

s )/R ≤ C‖G‖H−1/2(Γs).

The proof of Corollary 4.1 is also given in Appendix A.2. Thus, considering the trace on Γs of the
solution u± of system (23), we have defined the operator

PΓs
: W′ → W

G �→ u±
|Γs

(25)

mapping the jump condition in the right side of (23c) to the velocity trace on Γs. From Proposition 4.1
and Corollary 4.1, we can deduce more regularity for system (23), and consequently for operator PΓs

restricted to H1/2(Γs).

Proposition 4.2. Assume that ∂Ω is of class C1, and that G ∈ H1/2(Γs). Then system (23) admits a
unique solution (u+, p+, u−, p−) in H2(Ω+

s ) × H1(Ω+
s ) ×H2(Ω−

s ) × H1(Ω−
s ), and it satisfies the estimate

‖u+‖H2(Ω+
s ) + ‖p+‖H1(Ω+

s )/R + ‖u−‖H2(Ω−) + ‖p−‖H1(Ω−
s )/R ≤ C‖G‖H1/2(Γs),

where the constant C > 0 depends only Ω+
s and Ω−

s .
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Proof. The proof of the regularity theorem of [36, Theorem 9.19, p. 278], can be repeated in our context,
and the regularity of u± in H2(Ω±

s ) follows, as well as those of p± in H1(Ω±
s )/R. �

Therefore PΓs
maps H1/2(Γs) onto H3/2(Γs). Finally, we state the following properties for the Neumann-

to-Dirichlet operator PΓs
:

Proposition 4.3. Operator PΓs
is self-adjoint and non-negative, and Ker(PΓs

) = span(ns).

Proof. Let be G1, G2 ∈ H−1/2(Γs), and denote by (u±
1 , p±

1 ) and (u±
2 , p±

2 ) the solutions of system (23)
corresponding to G1 and G2 respectively. By integration by parts, we obtain

〈G2,PΓs
G1〉H−1/2(Γs);H1/2(Γs) = 〈− [σ(u2, p2)] ns, u

±
1 〉H−1/2(Γs);H1/2(Γs)

= 〈σ(u+
2 , p+

2 )n+
s + σ(u−

2 , p−
2 )n−

s , u±
1 〉H−1/2(Γs);H1/2(Γs)

= 2ν
(
〈ε(u+

1 ), ε(u+
2 )〉

L2(Ω+
s ) + 〈ε(u−

1 ), ε(u−
2 )〉

L2(Ω−
s )

)
.

This symmetric form shows that PΓs
is self-adjoint. Further, with G = G1 = G2, we have

〈G,PΓs
G〉H−1/2(Γs);H1/2(Γs) = 2ν

(
‖ε(u+

1 )‖2
L2(Ω+

s )
+ ‖ε(u−

1 )‖2
L2(Ω−

s )

)
≥ 0,

and 〈G,PΓs
G〉H−1/2(Γs);H1/2(Γs) = 0 if and only if u±

1 ≡ 0 from Lemma 2.0. Finally, Lemma 2.1 also
describes the kernel of PΓs

, finishing the proof. �

4.2. The Semi-homogeneous System

Using the operator PΓs
, we rewrite system (22) with λ = 0 as the following abstract evolution equation

∂Z

∂t
− PΓs

(μdivΓs
∇Γs

Z) = PΓs
G in (0, T ), Z(0) = Z0, (26)

with Z0 ∈ H2(Γs)/R2. Composing (26) by ∇Γs
, we obtain an equation dealing with ∇Γs

Z as unknown:

∂∇Γs
Z

∂t
− μ∇Γs

PΓs
(divΓs

∇Γs
Z) = ∇Γs

PΓs
G in (0, T ), ∇Γs

Z(0) = ∇Γs
Z0. (27)

The interest of this formulation is that the following unbounded linear operator

A : ∇Γs
H3/2(Γs) → ∇Γs

H3/2(Γs)
∇Γs

Z �→ μ∇Γs
PΓs

(divΓs
∇Γs

Z)
, (28)

with domain D(A) := ∇Γs
H5/2(Γs), is self-adjoint. For ∇Γs

Z ∈ ∇Γs
H�(Γs) we consider the norm

‖∇Γs
Z‖H�−1(Γs), with � ≥ 1. Let us derive the fundamental properties of A = μ∇Γs

PΓs
divΓs

.

Proposition 4.4. The operator (A,D(A)) is self-adjoint, dissipative, and thus infinitesimal generator of
an analytic semigroup on ∇Γs

H5/2(Γs).

Proof. The Green’s formula (2) shows that (∇Γs
)∗ = −divΓs

. For Z1, Z2 ∈ H5/2(Γs) we have

〈A∇Γs
Z1,∇Γs

Z2〉L2(Γs) = μ〈PΓs
(divΓs

∇Γs
Z1), (∇Γs

)∗∇Γs
Z2〉L2(Γs)

= −μ〈PΓs
(divΓs

∇Γs
Z1),divΓs

∇Γs
Z2〉L2(Γs)

= −μ〈PΓs
(ΔΓs

Z1),ΔΓs
Z2〉L2(Γs).

Using Proposition 4.3, we see that A is self-adjoint and dissipative. Consequently, from [10, Chapter 1,
Proposition 2.11], the operator (A,D(A)) generates an analytic semigroup, completing the proof. �

We prove now that A is maximal monotone, and has compact resolvent.

Proposition 4.5. The operator A generates an analytic semigroup of contractions, and has compact re-
solvent.
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Proof. Let us show that there exists λ ∈ R such that λId−A is invertible. Let be ∇Γs
W ∈ ∇Γs

H5/2(Γs) ⊂
H3/2(Γs) and consider the following resolvent equation:

λ∇Γs
Z − A∇Γs

Z = ∇Γs
W. (29)

Taking the scalar product of this equation by ∇Γs
Z, and using the Green’s formula (2), we obtain

λ‖∇Γs
Z‖2

L2(Γs) + μ〈PΓs
(divΓs

∇Γs
Z),divΓs

∇Γs
Z〉L2(Γs) = 〈∇Γs

W,∇Γs
Z〉L2(Γs).

Further, from the definition of PΓs
, we introduce u± the solution of

⎧
⎨

⎩

−div σ(u±, p±) = 0 and div u± = 0 in Ω±
s ,

u+ = 0 on ∂Ω,
[u] = 0 and − [σ(u, p)] ns = μdivΓs

∇Γs
Z on Γs,

(30)

and by integration by parts we deduce

λ‖∇Γs
Z‖2

L2(Γs) + 2ν
(
‖ε(u+)‖2

L2(Ω+) + ‖ε(u−)‖2
L2(Ω−)

)
= 〈∇Γs

W,∇Γs
Z〉L2(Γs). (31)

Introduce the bilinear form
a : ∇Γs

H1(Γs) × ∇Γs
H1(Γs) → R

(∇Γs
Z1,∇Γs

Z2) �→ λ〈∇Γs
Z1,∇Γs

Z2〉L2(Γs)

+2ν
(〈ε(u+

1 ), ε(u+
2 〉L2(Ω+) + 〈ε(u−

1 ), ε(u−
2 )〉L2(Ω−)

)
,

where u±
1 and u±

2 are solutions of (30) corresponding to Z = Z1 and Z = Z2, respectively. It satisfies

a(∇Γs
Z,∇Γs

Z) ≥ λ‖∇Γs
Z‖2

L2(Γs),

and thus, for λ > 0, it is coercive. From Proposition 4.4, it is sufficient to study the resolvent equation (29)
for λ = 1 for example. Introduce the linear form b : ∇Γs

H1(Γs) � ∇Γs
Z �→ 〈∇Γs

W,∇Γs
Z〉L2(Γs), which

is clearly continuous. We consider the variational formulation of (29) as follows:

Find ∇Γs
Z ∈ ∇Γs

H1(Γs) such that a(∇Γs
Z, ∇Γs

Z̃) = b(∇Γs
Z̃) for all ∇Γs

Z̃ ∈ ∇Γs
H1(Γs). (32)

From the Lax-Milgram theorem there exists a unique ∇Γs
Z ∈ ∇Γs

H1(Γs) solution of (32), and so
satisfying (29). Note that it is sufficient to assume ∇Γs

W ∈ ∇Γs
H1(Γs) for obtaining ∇Γs

Z ∈ ∇Γs
H1(Γs).

Choosing ∇Γs
Z̃ = ∇Γs

Z in (32), with the Cauchy-Schwarz inequality we get the following estimate

‖∇Γs
Z‖L2(Γs) ≤ C‖∇Γs

W‖L2(Γs). (33)

Next, if we assume ∇Γs
W ∈ ∇Γs

H2(Γs), let us prove that ∇Γs
Z ∈ ∇Γs

H2(Γs) too. Since ∇Γs
Z ∈

∇Γs
H1(Γs), the identity

−A∇Γs
Z = ∇Γs

W − ∇Γs
Z

yields

‖∇Γs
PΓs

divΓs
∇Γs

Z‖L2(Γs) = ‖A∇Γs
Z‖L2(Γs) ≤ ‖∇Γs

W‖L2(Γs) + ‖∇Γs
Z‖L2(Γs) ≤ C‖∇Γs

W‖L2(Γs),
(34)

where we used (33). Therefore PΓs
divΓs

∇Γs
Z ∈ H1(Γs), which means that u±

|Γs
∈ H1(Γs) in system (30),

leading to u± ∈ H3/2(Ω±
s ), and consequently to − [σ(u, p)] ns = μdivΓs

∇Γs
Z ∈ L2(Γs). Furthermore,

using classical elliptic estimates for Stokes problems with prescribed non-homogeneous Dirichlet boundary
conditions (see [29, Lemma 6.1, Chapter IV], the estimates in fractional spaces can be obtained by linear
interpolation), we estimate

‖ΔΓs
Z‖L2(Γs) = ‖divΓs

∇Γs
Z‖L2(Γs) = ‖ [σ(u, p)] ns‖L2(Γs)

≤ C
(
‖u‖H3/2(Ω±

s )/R2 + ‖∇p‖H−1/2(Ω±
s )/R2

)

≤ C‖u±
|Γs

‖H1(Γs)/R2 = C‖PΓs
divΓs

∇Γs
Z‖H1(Γs)/R2

≤ C‖∇Γs
PΓs

divΓs
∇Γs

Z‖L2(Γs) = C‖A∇Γs
Z‖L2(Γs)

≤ C‖∇Γs
W‖L2(Γs),
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where we have used the Poincaré inequality (5) and estimate (34) above. Next, using (8), we deduce

‖∇Γs
Z‖H1(Γs) ≤ ‖Z‖H2(Γs)/R2 ≤ C‖∇Γs

W‖L2(Γs). (35)

We proceed similarly in order to estimate

‖∇Γs
Z‖H2(Γs) ≤ ‖Z‖H3(Γs) ≤ ‖ΔΓs

Z‖H1(Γs) = ‖ [σ(u, p)] ns‖H1(Γs)

≤ C
(
‖u‖H5/2(Ω±

s )/R2 + ‖∇p‖H1/2(Ω±
s )/R2

)

≤ C‖u±
|Γs

‖H2(Γs)/R2 = C‖PΓs
divΓs

∇Γs
Z‖H2(Γs)/R2

≤ C‖∇Γs
PΓs

divΓs
∇Γs

Z‖H1(Γs) = C‖A∇Γs
Z‖H1(Γs).

Again, the identity −A∇Γs
Z = ∇Γs

W − ∇Γs
Z yields

‖A∇Γs
Z‖H1(Γs) ≤ ‖∇Γs

W‖H1(Γs) + ‖∇Γs
Z‖H1(Γs) ≤ C‖∇Γs

W‖H1(Γs),

where we have used (35), and thus we deduce

‖∇Γs
Z‖H2(Γs) ≤ C‖∇Γs

W‖H1(Γs). (36)

Combining (35) and (36), by interpolation we obtain

‖∇Γs
Z‖H3/2(Γs) ≤ C‖∇Γs

W‖H1/2(Γs),

which proves that Id − A is surjective. Hence, from the Lumer-Phillips theorem, the analytic semigroup
that A generates is of contractions. Further, since the embedding ∇Γs

H5/2 ↪→ ∇Γs
H3/2 is compact,

the last estimate above shows that the resolvent (Id − A)−1 exists and is compact, which completes the
proof. �

We deduce wellposedness for system (26).

Theorem 4.1. Let be 0 < T < ∞. For G ∈ GT (Γs) and Z0 ∈ Z0(Γs), the following system

−div(u±, p±) = 0, and div u± = 0 in Ω±
s × (0, T ),

u+ = 0 on ∂Ω × (0, T ),

u± =
∂Z

∂t
and − [σ(u, p)] ns = μdivΓs

∇Γs
Z + G on Γs × (0, T ),

Z(·, 0) = Z0 on Γs,

admits a unique solution Z ∈ ZT (Γs). Moreover, there exists a constant C > 0, non-decreasing with
respect to T , such that

‖Z‖ZT (Γs) + ‖Z‖L∞(0,T ;H2(Γs)) ≤ C
(‖Z0‖Z0(Γs) + ‖G‖GT (Γs)

)
.

Proof. See for example [65, Proposition 3.3], that provides for (27) existence and uniqueness of ∇Γs
Z

satisfying

‖∇Γs
Z‖L2(0,T ;H3/2(Γs))∩H1(0,T ;H1/2(Γs)) + ‖∇Γs

Z‖L∞(0,T ;H1(Γs)) ≤ C
(‖Z0‖Z0(Γs) + ‖G‖GT (Γs)

)
.

From ∇Γs
Z, we retrieve Z up to a constant, by using estimates (5)–(7) of Proposition 2.1, leading to the

announced result. �

4.3. The Non-homogeneous System

We now address system (22) in finite-time horizon, for general right-hand-sides, and any λ ≥ 0.

−div σ(u±, p±) = F± and div u± = div H± in Ω±
s × (0, T ),

u+ = 0 on ∂Ω × (0, T ),

u+ = u− =
∂Z

∂t
− λZ and − [σ(u, p)] ns = μdivΓs

∇Γs
Z + G on Γs × (0, T ),

Z(·, 0) = Z0 on Γs.

(37)
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With 0 < T < ∞, we assume that F± ∈ FT (Ω±
s ), G ∈ GT (Γs), H± ∈ UT (Ω±

s ), and Z0 ∈ Z0(Γs). We use
a lifting method: Let us describe a solution of (37) as

u± = v± + w±, p± = q± + π±,

where (w±, π±) are solutions of the following Stokes problems

−div(w±, π±) = F± and div w± = div H± in Ω±
s × (0, T ),

w+ = 0 on ∂Ω × (0, T ),
w+ = w− = 0 on Γs × (0, T ),

(38)

and (v±, q±) satisfy

−div σ(v±, q±) = 0 and div v± = 0 in Ω±
s × (0, T ),

v+ = 0 on ∂Ω × (0, T ),

v+ = v− =
∂Z

∂t
− λZ and − [σ(v, q)] ns = μdivΓs

∇Γs
Z + G + [σ(w, π)] ns on Γs × (0, T ),

Z(·, 0) = Z0 on Γs.

(39)

Note that the equations of (38) are uncoupled, as both Stokes systems can be considered in Ω+
s and Ω−

s

independently. By considering w± := w± −H±, we eliminate the non-homogeneous divergence condition,
and we reduce (38) to standard Stokes problems with non-homogeneous Dirichlet condition:

−div σ(w±, π±) = F± + 2ν div ε(H±) and div w± = 0 in Ω±
s ,

w+ = 0 on ∂Ω,
w± = −H± on Γs.

(40)

It is well-known that for almost every t ∈ (0, T ) there exists a unique solution (w±, π±) satisfying

‖w±‖2
H2(Ω±

s )
+ ‖π‖2

H1(Ω±
s )/R

≤ C
(
‖F±‖2

L2(Ω±
s )

+ ‖div ε(H±)‖2
L2(Ω±

s )
+ ‖H±‖2

H3/2(Γs)

)
.

See for example [29, Lemma 6.1, Chapter IV]. We deduce the same estimate for (w±, π) = (w± +H±, π).
Further, integrating in time this estimate, it follows from the trace theorem the following estimate

‖ [σ(w, π)] ns‖GT (Γs) ≤ C
(
‖F±‖FT (Ω±

s ) + ‖H±‖UT (Ω±
s )

)
. (41)

On the other side, equation (39) admits the following operator formulation
∂Z

∂t
− λZ − PΓs

(μdivΓs
∇Γs

Z) = PΓs

(
G + [σ(w, π)] ns

)
in (0,T), Z(0) = Z0.

Following Proposition 4.5 and Theorem 4.1, system (39) admits a unique solution, satisfying

‖Z‖ZT (Γs) ≤ C
(‖Z0‖Z0(Γs) + ‖G‖GT (Γs) + ‖ [σ(w, π)] ns‖GT (Γs)

)
.

Combined with (41), this estimate yields

‖Z‖ZT (Γs) ≤ C
(
‖Z0‖Z0(Γs) + ‖G‖GT (Γs) + ‖F±‖FT (Ω±

s ) + ‖H±‖UT (Ω±
s )

)
. (42)

Wellposedness of the linear system (37) is stated as follows:

Proposition 4.6. For 0 < T < ∞, if F± ∈ FT (Ω±
s ), H± ∈ UT (Ω±

s ), G ∈ GT (Γs) and Z0 ∈ Z0(Γs), then
there exists a unique solution Z ∈ ZT (Γs) to system (37). It satisfies (42).

Proof. Existence is provided by the lifting method described above. For proving uniqueness, we use the
linearity of the system, and assume F± = H± = G = Z0 = 0. Then from Lemma 2.3 we obtain (11) with
g = 0, namely the following identity

μ

2
d
dt

‖∇Γs
Z‖2

L2(Γs) + 2ν
(
‖ε(u+)‖2

L2(Ω+
s )

+ ‖ε(u−)‖
L2(Ω−

s )

)
= λ‖∇Γs

Z‖2
L2(Γs).

The Grönwall’s lemma combined with Z0 = 0 yields Z ≡ 0 (up to a constant of R2), and concludes the
proof. �
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5. Feedback Operator for the Linear System

This section is devoted to the design of a feedback operator that stabilizes system (22) in infinite time
horizon. Let us first study its controllability properties in finite time horizon.

5.1. Approximate Controllability

Let be 0 < T < ∞. We consider system (22) with control G, with null data and initial condition:

−div σ(u±, p±) = 0 and div u± = 0 in Ω±
s × (0, T ),

u+ = 0 on ∂Ω × (0, T ),

u± =
∂Z

∂t
and − [σ(u, p)] n = μΔΓs

Z + G on Γs × (0, T ),

Z(·, 0) = 0 on Γs.

(43)

Recall the definition of approximate controllability and exact controllability for linear evolution equations
of type (43), that we state in our context as follows:

Definition 5.1. Define the reachable set as

R(T ) := {Z(·, T ) such that Z is solution of (43) | G ∈ GT (Γs)} .

We say that system (43) is approximately controllable if R(T ) is dense in L2(Γs)/R2, or equivalently if
R(T )⊥ = R

2. We say that (43) is exactly controllable if R(T ) = L2(Γs)/R2.

We obtain the following key result:

Proposition 5.1. System (43) is approximately controllable.

Proof. Introduce ZT ∈ R(T )⊥, and the following adjoint system

−div σ(φ±, ψ±) = 0 and div φ± = 0 in Ω±
s × (0, T ),

φ+ = 0 on ∂Ω × (0, T ),

φ± = −∂ζ

∂t
and − [σ(φ, ψ)] ns = μΔΓs

ζ on Γs × (0, T ),

ζ(T ) = ZT on Γs,

(44)

with (φ+, ψ+, φ−, ψ−, ζ) as unknowns. Now consider (u+, p+, u−, p−, Z) the solution of (43). Taking the
inner product in L2(0, T ;L2(Ω±

s )) of the left equation in the first line of (44) by u±, by integration by
parts we obtain for all G ∈ GT (Γs)

μ 〈∇Γs
ZT ,∇Γs

Z(T )〉L2(Γs) =
∫ T

0

〈
G,

∂ζ

∂t

〉

L2(Γs)

dt.

Since ZT ∈ R(T )⊥, this identity implies that
∂ζ

∂t
= 0 in L2(0, T ;L2(Γs)). System (44) then becomes

system (9) of Lemma 2.2, which yields that ζ is a constant of R2, and therefore ZT too, completing the
proof. �

5.2. Feedback Operator

Theorem 5.1. For all λ > 0 and Z0 ∈ Z0(Γs), there exists a finite-dimensional subspace H
(λ)
u of ∇Γs

H5/2(Γs), with orthogonal projection Pλ : ∇Γs
H5/2(Γs) → H

(λ)
u , a finite-dimensional space Ξ ⊂ H1/2(Γs)

and a linear operator Πλ ∈ L
(
H

(λ)
u , (H(λ)

u )∗
)

defining the feedback operator

Kλ := −PΓs
(∇Γs

)∗ΠλPλ ∈ L
(
∇Γs

H5/2(Γs),Ξ
)
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such that the solution Z of system (22) with G = Kλ∇Γs
Z satisfies ‖Z‖Z∞(Γs) ≤ C0, where the con-

stant C0 depends only on Z0. Further, the operator Πλ is the solution of the following finite-dimensional
algebraic Riccati equation

Πλ = Π∗
λ � 0, ΠλAλ + A∗

λΠλ − ΠλBλB∗
λΠλ + I = 0, (45)

where we have introduced Aλ = PλAPλ ∈ L(H(λ)
u ,H

(λ)
u ) and Bλ = Pλ∇Γs

PΓs
∈ L(H1/2(Γs),H

(λ)
u ).

Proof. Let us consider the operator formulation of system (22), namely

∂∇Γs
Z

∂t
− (A + λId)∇Γs

Z = ∇Γs
PΓs

G in (0, T ), ∇Γs
Z(0) = ∇Γs

Z0, (46)

where A is defined in (28). Recall that from ∇Γs
Z we can retrieve Z (up to a constant) via Propo-

sition 2.1. We can choose λ in the resolvent of A, without loss of generality. From Proposition 4.4,
the spectrum of A is a discrete set of complex eigenvalues (λi)i∈N, contained in an angular domain
{z ∈ C\{0} | arg(θ − z) ∈ (−α, α)} where θ ∈ (0, π/2) and α ∈ R. We can order them such that

· · · < �(λN+1) < −λ < �(λN ) < · · · < �(λ2) < �(λ1) < 0.

Furthermore, the generalized eigenspace associated with each eigenvalue is of finite dimension (see for
instance [38, Chapter III, Theorem 6.29 page 187]). Denoting by Λ(λi) the real generalized eigenspace of
λi or (λi, λi) whether �(λi) = 0 or not, respectively, we introduce the Hilbert spaces

H(λ)
u =

N⊕

i=1

Λ(λi), H(λ)
s =

∞⊕

i=N+1

Λ(λi).

Let us explain what we mean by real generalized eigenspace: If (ej(λi))1≤j≤m(λi) is a basis of the complex
generalized eigenspace of λi, where m(λi) denotes its multiplicity, then Λ(λi) is generated by the family
{�(ej(λi)),�(ej(λi)) | 1 ≤ j ≤ m(λi)}. Note that H(λ)

u , the space of unstable modes, is of finite dimension.
Both H

(λ)
u and H

(λ)
s are invariant under A. Denote by Pλ the orthogonal projection on H

(λ)
u , parallel

to H
(λ)
s . Projecting equation (46), with λ = 0, on H

(λ)
u yields

∂Pλ∇Γs
Z

∂t
− PλAPλ∇Γs

Z = Pλ∇Γs
PΓs

G in (0, T ), Pλ∇Γs
Z(0) = Pλ∇Γs

Z0. (47)

The approximate controllability of system (43) obtained in Proposition 5.1 implies that (47) too is
approximately controllable. Its reachable set is dense in H

(λ)
u , and since this space is of finite dimension,

it is actually equal to H
(λ)
u . This means that equation (47) is exactly controllable. From there, we use for

instance the result of [70, Chapter I, Theorem 2.9, page 35] stating that there exists a linear operator Kλ

defined on H
(λ)
u such that PλAPλ +Pλ∇Γs

PΓs
Kλ is exponentially stable with λ as a decay rate. Since the

same property holds for A(Id − Pλ), we merely set Kλ = �KλPλ and Ξ = �Kλ(H(λ)
u ). Further, following

[62] (more specifically Lemma 8.4.1 page 381 and Theorem 41 page 384), we consider the following infinite
time horizon optimal control problem:

inf
G∈Ξ

{J (Z,G) | Z satisfies (43)} , (48)

with J (Z,G) =
1
2

∫ ∞

0

‖Pλ∇Γs
Z‖2

H
(λ)
u

dt +
1
2

∫ ∞

0

‖G‖2
Ξdt. The first-order optimality conditions for Prob-

lem (48) lead to G = −P∗
Γs

(∇Γs
)∗ΠλPλ∇Γs

Z = PΓs
divΓs

ΠλPλ∇Γs
Z, where Πλ = Π∗

λ � 0 satisfies the
Riccati equation (45), finishing the proof. �

We deduce an estimate for the stabilized linear system with non-homogeneous right-hand-sides.
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Corollary 5.1. Assume Z0 ∈ Z0(Γs), F± ∈ F∞(Ω±
s ), H± ∈ U∞(Ω±

s ), and G ∈ G∞(Γs). Using the
feedback operator Kλ obtained in Theorem 5.1, there exists a unique solution Z ∈ Z∞(Γs) to the following
system

−div σ(u±, p±) = F± and div u± = div H± in Ω±
s × (0,∞),

u+ = 0 on ∂Ω × (0,∞),

u+ = u− =
∂Z

∂t
− λZ and − [σ(u, p)] n = μdivΓs

∇Γs
Z + Kλ∇Γs

Z + G on Γs × (0,∞),

Z(·, 0) = Z0 on Γs,

(49)

and it satisfies

‖u+‖U∞(Ω+
s ) + ‖p+‖Q∞(Ω+

s ) + ‖u−‖U∞(Ω−
s ) + ‖p−‖Q∞(Ω−

s ) + ‖Z‖Z∞(Γs)

≤ Cs(1 + λ)
(
‖Z0‖Z0(Γs) + ‖F+‖F∞(Ω+

s ) + ‖F−‖F∞(Ω−
s ) + ‖H+‖U∞(Ω+

s ) + ‖H−‖U∞(Ω−
s ) + ‖G‖G∞(Γs)

)
,

(50)
where the constant Cs > 0 depends only on Γs.

Proof. The lifting method of Sect. 4.3 can be used here: Introduce u± = v± + w± and p± = q± + π±,
where (w±, π±) satisfy the Stokes problems (38) with (0, T ) replaced by (0,∞), and where (v±, q±, Z)
satisfies

−div σ(v±, q±) = 0 and div v± = 0 in Ω±
s × (0,∞),

v+ = 0 on ∂Ω × (0,∞),

v± =
∂Z

∂t
− λZ and − [σ(v, q)] ns = μdivΓs

∇Γs
Z + Kλ∇Γs

Z + G + [σ(w, π)] ns on Γs × (0,∞),

Z(·, 0) = Z0 on Γs.
(51)

We formulate system (51) as

∂∇Γs
Z

∂t
− λ∇Γs

Z − ∇Γs
PΓs

(μdivΓs
∇Γs

Z) − Kλ∇Γs
Z = ∇Γs

PΓs
(G + [σ(w, π)] ns) ,

∂∇Γs
Z

∂t
− (λId + A + Kλ)∇Γs

Z = ∇Γs
PΓs

(G + [σ(w, π)] ns) ,

and since the operator λId+A+Kλ is the infinitesimal generator of an analytic semigroup of negative type,
a consequence of [10, Theorem 3.1 page 143, Part II] and Proposition 2.1 is the existence of Z ∈ Z∞(Γs),
satisfying

‖Z‖Z∞(Γs) ≤ C
(‖Z0‖Z0(Γs) + ‖G‖G∞(Γs) + ‖ [σ(w, π)] ns‖G∞(Γs)

)
.

Next, the steps of Sect. 4.3 can be repeated to obtain the existence and uniqueness of Z, which satisfies

‖Z‖Z∞(Γs) ≤ C
(
‖Z0‖Z0(Γs) + ‖F+‖F∞(Ω+

s ) + ‖F−‖F∞(Ω−
s ) + ‖H+‖U∞(Ω+

s ) + ‖H−‖U∞(Ω−
s ) + ‖G‖G∞(Γs)

)
.

(52)
Further, (u±, p±) are also obtained uniquely as the solutions of the classical Stokes problems with Dirichlet
boundary conditions and non-homogeneous divergence condition, namely

−div σ(u±, p±) = F± and div u± = div H± in Ω±
s × (0,∞),

u+ = 0 on ∂Ω × (0,∞),

u± =
∂Z

∂t
− λZ on Γs × (0,∞).

Up to considering u± − H±, from [29, Lemma 6.1, Chapter IV] they satisfy the estimate

‖u±‖U∞(Ω±
s ) + ‖p±‖Q∞(Ω±

s ) ≤ C

(∥
∥
∥
∥

∂Z

∂t
− λZ

∥
∥
∥
∥

L2(0,∞;H3/2(Γs))

+ ‖H±‖U∞(Ω±
s )

)

≤
(
(1 + λ)‖Z‖Z∞(Γs) + ‖H±‖U∞(Ω±

s )

)

which, combined with (52), leads to (50), and thus the announced result. �
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6. Feedback Stabilization of the Nonlinear System

In this section we prove Theorem 1.1. We first prove wellposedness of system (19)–(20) when ĝ is replaced
by μdivΓs

(
(τs ⊗ τs)∇Γs

Ẑ
)

+ Kλ∇Γs
Ẑ in (19):

− div(σ(û±, p̂±)) = f̂± + F (û±, p̂±, Ẑ) and div û = div H(û±, Ẑ) in Ω±
s × (0, ∞),

û+ = 0 on ∂Ω × (0, ∞),

û± =
∂Ẑ

∂t
− λẐ, and − [σ(û, p̂)] ns = μ divΓs

∇Γs
Ẑ + Kλ∇Γs

Ẑ + G(û+, p̂+, û−, p̂−, Ẑ) on Γs × (0, ∞),

Ẑ(·, 0) = X0 − Id on Γs.

(53)
Denote

H(Ω+
s ,Ω−

s ,Γs) := U∞(Ω+
s ) × Q∞(Ω+

s ) × U∞(Ω−
s ) × Q∞(Ω−

s ) × Z∞(Γs),

that we equip with the norm that goes without saying. A solution for system (53) is obtained as a fixed
point of the mapping

N : H(Ω+
s ,Ω−

s ,Γs) → H(Ω+
s ,Ω−

s ,Γs)
(û+

1 , p̂+
1 , û−

1 , p̂−
1 , Ẑ1) �→ (û+

2 , p̂+
2 , û−

2 , p̂−
2 , Ẑ2),

where (û+
2 , p̂+

2 , û−
2 , p̂−

2 , Ẑ2) is the solution of (49) with F±, H± and G replaced by F (û±
1 , p̂±

1 , Ẑ1), H(û±
1 , Ẑ1)

and G(û+
1 , p̂+

1 , û−
1 , p̂−

1 , Ẑ1), respectively:

− div(σ(û±
2 , p̂±2 )) = f̂± + F (û±

1 , p̂±1 , Ẑ1) and div û2 = H(û±
1 , Ẑ1) in Ω±

s × (0, ∞),

û+
2 = 0 on ∂Ω × (0, ∞),

û±
2 =

∂Ẑ2

∂t
− λẐ2 on Γs × (0, ∞),

− [σ(û2, p̂2)] ns = μ divΓs ∇Γs Ẑ2 + Kλ∇Γs Ẑ2 + G(û+
1 , p̂+

1 , û−
1 , p̂−1 , Ẑ1) on Γs × (0, ∞),

Estimate (50) of Corollary 5.1 yields

‖(û+
2 , p̂+

2 , û−
2 , p̂−

2 , Ẑ2)‖H(Ω+
s ,Ω−

s ,Γs) ≤ Cs(1 + λ)
(
‖X0 − Id‖Z0(Γs) + ‖f̂+‖F∞(Ω+

s ) + ‖f̂−‖F∞(Ω−
s )

+‖F (û+
1 , p̂+

1 , Ẑ1)‖F∞(Ω+
s ) + ‖F (û−

1 , p̂−
1 , Ẑ1)‖F∞(Ω−

s )

+‖H(û+
1 , Ẑ1)‖U∞(Ω+

s ) + ‖H(û−
1 , Ẑ1)‖U∞(Ω−

s )

+‖G(û+
1 , p̂+

1 , û−
1 , p̂−

1 , Ẑ1)‖G∞(Γs)

)
.

(54)

Consider the following closed subset of Z∞(Γs)

Bρ :=
{

(û+, p̂+, û−, p̂−, Ẑ) ∈ H∞(Ω+
s ,Ω−

s ,Γs) | ‖(û+, p̂+, û−, p̂−, Ẑ‖H(Ω+
s ,Ω−

s ,Γs) ≤ 2Cs(1 + λ)ρ
}

,

where

ρ := ‖X0 − Id‖Z0(Γs) + ‖f̂+‖F∞(Ω+
s ) + ‖f̂−‖F∞(Ω−

s ),

and Cs is the constant of estimate (50). Let us prove that N is a contraction in B, provided that
‖X0 − Id‖Z0(Γs) and ‖f̂±‖F∞(Ω±

s ) are small enough. Since the different nonlinearities in the right-hand-
side of (54) are polynomial, from [35, Proposition B.1, page 283] we can address them with estimates of
type

‖∇Ỹ (X̃)∇û‖
H1(Ω±

s ) ≤ C‖∇Ỹ (X̃)‖
H3/2(Ω±

s )‖∇û‖
H1(Ω±

s ).
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Combined with the Lipschitz estimates of Proposition 3.1 and Corollary 3.1, we deduce

‖F (û±, p̂±, Ẑ)‖L2(Ω±
s ) ≤ C‖∇Ỹ (X̃)‖

H3/2(Ω±
s )

(
‖∇û‖

H1(Ω±
s ) + ‖p̂‖H1(Ω±

s )

)
‖∇X̃ − I‖

H3/2(Ω±
s ),

‖F (û±, p̂±, Ẑ)‖F∞(Ω±
s ) ≤ C

(
1 + ‖X − Id‖Z∞(Γs)

) (
‖û‖U∞(Ω±

s ) + ‖p̂‖Q∞(Ω±
s )

)
‖X − Id‖Z∞(Γs)

≤ C
(
1 + ‖e−λtẐ‖Z∞(Γs)

)(
‖û‖U∞(Ω±

s ) + ‖p̂‖Q∞(Ω±
s )

)
‖e−λtẐ‖Z∞(Γs)

‖H(û±, Ẑ)‖U∞(Ω±
s ) ≤ C‖û‖U∞(Ω±

s )‖X − Id‖Z∞(Γs) ≤ C‖û‖U∞(Ω±
s )‖e−λtẐ‖Z∞(Γs),

‖G(û+, p̂+, û−, p̂−, Ẑ)‖G∞(Γs) ≤ C
(
1 + ‖e−λtẐ‖Z∞(Γs)

)(
‖û‖U∞(Ω±

s ) + ‖p̂‖Q∞(Ω±
s )

)
‖e−λtẐ‖Z∞(Γs)

+O(‖∇X̃ − I‖2
H1(Γs))

≤ C
(
1 + ‖e−λtẐ‖Z∞(Γs)

)(
‖û‖U∞(Ω±

s ) + ‖p̂‖Q∞(Ω±
s )

)
‖e−λtẐ‖Z∞(Γs)

+C‖e−λtẐ‖2
Z∞(Γs).

We see easily that ‖e−λtẐ‖Z∞(Γs) ≤ C(1 + λ)‖Ẑ‖Z∞(Γs). Consequently, if (û+
1 , p̂+

1 , û−
1 , p̂−

1 , Ẑ1) ∈ Bρ,
from (54) we obtain

‖(û+
2 , p̂+

2 , û−
2 , p̂−

2 , Ẑ2)‖H(Ω+
s ,Ω−

s ,Γs) ≤ Cs(1 + λ)
(
ρ + Cρ2(1 + λ)3(1 + (1 + λ) + ρ(1 + λ)2)

)
.

Therefore N is well-defined, and if ρ is small enough, that is

Cρ2(1 + λ)3(1 + (1 + λ) + ρ(1 + λ)3) ≤ ρ,

the ball B is left invariant under N . Next, let be

(û+
i , p̂+

i , û−
i , p̂−

i , Ẑi) ∈ Bρ

for i ∈ {1, 2}. The difference

(u+, p+, u−, p−, Z) := N (û+
1 , p̂+

1 , û−
1 , p̂−

1 , Ẑ1) − N (û+
2 , p̂+

2 , û−
2 , p̂−

2 , Ẑ2)

satisfies

−div(σ(u±, p±)) = F
±

and div u = div H
±

in Ω±
s × (0,∞),

u+ = 0 on ∂Ω × (0,∞),

u =
∂Z

∂t
− λZ, and − [σ(u, p)] ns = μdivΓs

∇Γs
Z + Kλ∇Γs

Z + G on Γs × (0,∞),

Z(·, 0) = 0 on Γs,

(55)

where we have introduced

F
±

:= F (û±
1 , p̂±

1 , Ẑ1) − F (û±
2 , p̂±

2 , Ẑ2),
H

±
:= H(û±

1 , Ẑ1) − H(û±
2 , Ẑ2),

G := G(û+
1 , p̂+

1 , û−
1 , p̂−

1 , Ẑ1) − G(û+
2 , p̂+

2 , û−
2 , p̂−

2 , Ẑ2).

Using the Lipschitz estimates of Proposition 3.1 and Corollary 3.1, they satisfy

‖F±‖F∞(Ω±
s ) + ‖G‖G∞(Γ±

s ) ≤ C
(
‖e−λt(Ẑ1 − Ẑ2)‖Z∞(Γs) + ‖û1 − û2‖U∞(Ω±

s ) + ‖p̂1 − p̂2‖Q∞(Ω±
s )

)

×
(

2∑

i=1

‖ûi‖U∞(Ω±
s ) + ‖p̂i‖Q∞(Ω±

s ) + ‖e−λtẐi‖Z∞(Γs)

)

×
(
1 + ‖e−λtẐ1‖Z∞(Γs) + ‖e−λtẐ2‖Z∞(Γs)

)
,

‖H±‖U∞(Ω±
s ) ≤ C

(
‖e−λt(Ẑ1 − Ẑ2)‖Z∞(Γs) + ‖û1 − û2‖U∞(Ω±

s )

)

×
(
‖û2‖U∞(Ω±

s ) + ‖e−λtẐ1‖Z∞(Γs)

)
.
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Combined with estimate (50) of Corollary 5.1, we then obtain

‖(u+, u+, u−, p−, Z)‖H(Ω+
s ,Ω−

s ,Γs) ≤ Cs(1 + λ)
(
‖F

+‖F∞(Ω+
s ) + ‖F

−‖F∞(Ω−
s )

+‖H
+‖U∞(Ω+

s ) + ‖H
−‖U∞(Ω−

s ) + ‖G‖G∞(Γs)

)

≤ C(1 + λ)2ρ(1 + (1 + λ)ρ)
×‖(û+

1 − û+
2 , p̂+

1 − p̂+
2 , û−

1 − û−
2 , p̂−

1 − p̂−
2 , Ẑ1 − Ẑ2)‖H(Ω+

s ,Ω−
s ,Γs).

Choosing once again ρ small enough, that is C(1+λ)2ρ(1+(1+λ)ρ) < 1, we obtain that N is a contraction
in Bρ. Therefore wellposedness for (53) is a consequence of the Banach fixed-point theorem. Furthermore,
‖Ẑ‖Z∞(Γs) is bounded. Recall that in (18) we introduced Ẑ = eλt(X − Id), where Id can be replaced by
any deformation Xc ∈ CΓs

. In (53) we have chosen

ĝ = μdivΓs

(
(τs ⊗ τs)∇Γs

Ẑ
)

+ Kλ∇Γs
Ẑ

= μeλt divΓs

(
(τs ⊗ τs)∇Γs

(X − Xc)
)

+ eλtKλ∇Γs
(X − Xc).

Still following Sect. 3.2, we note that system (53) is equivalent to (1) by choosing

g =
(|cof∇X̃ns|−1g̃

) ◦ X−1 =
(|cof∇X̃ns|−1e−λtĝ

) ◦ X−1

=
(
|cof∇X̃ns|−1

(
divΓs

(
(τs ⊗ τs)∇Γs

(X − Xc)
)

+ Kλ∇Γs
(X − Xc)

)) ◦ X−1.

Since (detg(t))1/2 = |cof∇X̃ns|(detgs)1/2, and (det gs)1/2 = 1 is constant, we consider

g =
(
(detg)−1/2

(
divΓs

(
(τs ⊗ τs)∇Γs

(X − Xc)
)

+ Kλ∇Γs
(X − Xc)

)) ◦ X−1.

Thus the result announced in Theorem 1.1 follows.

7. Comments on a Possible Extension to Dimension 3

Some results obtained in the present paper could certainly and straightforwardly be extended to the
three-dimensional case, like the study of the Poincaré-Steklov operator for example, or the design of the
feedback operator. Higher-order Sobolev spaces may be considered for guaranteeing the C1 regularity
and stability of Sobolev spaces by product. However, some geometric aspects would deserve a careful
investigation. Let us make comments on the difficulties that appear in dimension 3:

• About the stationary state obtained in Lemma 2.1: In dimension 2, the interface Γ(t) is a curve,
and its mean curvature is simply called the curvature. From the fundamental theorem of curves,
this curvature determines entirely Γ(t), up to proper rigid deformations. In the case of dimension 3,
the interface Γ(t) is then a surface, and this is the Gaussian curvature which characterizes the
metric of the surface. We say that this is an intrinsic property of the surface Γ(t) (cf. the Gauss’s
Theorem Egregium). More precisely, two surfaces with the same Gaussian curvature differ only up
to proper rigid deformations, we say that they are congruent. The mean curvature which appears in
the surface-tension model is only extrinsic in dimension 3, which means that two surfaces with the
same mean curvature could not be congruent. However, when restricting the framework to closed
surfaces, the Alexandrov’s theorem [3] (see [4] for an English translation) provides a positive result:
Two closed surfaces with the same mean curvature are identical, up to essential transformations.
Essential transformations refer to proper rigid deformations and dilatation. In the incompressible
case, the volume contained inside the surface is constant, and thus this notion reduces to proper
rigid deformations, like in dimension 2.

• About the linearized system in dimension 3: Simplifications specific to dimension 2 have been made
in Sect. 3.2 when linearizing the mean curvature of Γ(t) for small displacements. The expression so
obtained involves the operator ∇ns

Γs
. A priori the linear operator which appears in dimension 3 is

more complex, and discussions of Sect. 2.3 about the kernel of ∇ns

Γs
would no longer be relevant.
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• About the extension of diffeomorphisms on the sphere into the ball: This question is less simple
in the case of a 2-sphere. In [69, system (8.3), section 8], the author gave comments on conditions
under which we could extend a diffeomorphism defined on a boundary of a given domain. A sufficient
condition is that the set of diffeomorphisms of this boundary preserving the orientation is connected.
In R

2, this sufficient condition is always fulfilled and thus the answer is positive. In R
3, things are

more delicate, and counter-examples to this sufficient condition exist. However, in the case of the
sphere, Smale provided a positive answer in [60]. The result requires a C∞ regularity, and we do not
know whether it could be used for obtaining an extension with the same properties as in Sect. 3.1.
Further comments on these geometric questions would go beyond the scope of the present article.
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A Appendix

A.1 Proof of Proposition 3.1

Harmonic extension of X. Let us first discuss of how to extend X from the circle Γs into the unit
ball Ω−

s . In dimension 2, one way of extending diffeomorphisms of the circle is to consider the Douady-
Earle extension [26], which is harmonic, and therefore inherits of the elliptic regularity from its Dirichlet
boundary condition. It relies on the Radó-Kneser-Choquet theorem, and more specifically the Poisson
integral formula. Many generalizations of such a result have been obtained afterwards, in particular
requiring the strong Choquet condition, namely that X(Γs) shall be convex. But more recently it has
been extended in [5,6] to the case of homeomorphisms from the unit circle onto a simple closed curve of
R

2. We state [5, Theorem 1.3] in our context as follows:

Lemma A.1. Let X : Γs → X(Γs) be an orientation preserving diffeomorphism of class C1 onto a simple
closed curve X(Γs). Let D be the bounded domain such that ∂D = X(Γs). Denote by XRKC the solution
of the Dirichlet problem

{
ΔXRKC = 0 in Ω−

s ,
XRKC = X on Γs.

(56)

When XRKC ∈ C1(Ω−
s ), it is a diffeomorphism of Ω−

s onto D if and only if det∇XRKC > 0 everywhere
on Γs.

http://creativecommons.org/licenses/by/4.0/


    7 Page 28 of 33 S. Court JMFM

The condition XRKC ∈ C1(Ω−
s ) is satisfied when the elliptic regularity of (56) provides a solution in

a Sobolev space that is embedded in C1(Ω−
s ), in our case H5/2(Ω±

s ). The condition det∇XRKC > 0 can
be guaranteed by assuming the data X close enough to the identity. The estimates provided in the next
step shows this.
Elliptic regularity, Lipschitz estimates and invertibility. The interest of extending X via the Dirichlet
problem (56) lies in the linearity and simplicity of the latter. Therefore we derive straightforwardly the
following result, leading to Proposition 3.1:

Proposition A.1. If X ∈ Z∞(Γs), the solutions X̃± of
⎧
⎨

⎩

ΔX̃± = 0 in Ω±
s × (0,∞),

X̃± = X on Γs × (0,∞),
X̃+ = Id on ∂Ω × (0,∞),

(57)

satisfy
‖X̃± − Id‖X∞(Ω±

s ) ≤ C‖X − Id‖Z∞(Γs). (58)

If ‖X − Id‖Z∞(Γs) is small enough, the extension X̃+ is locally invertible, and X̃− is globally invertible.
Furthermore, given two mappings X1 − Id, X2 − Id ∈ Z∞(Γs), the respective solutions X̃±

1 , X̃±
2 of (57)

satisfy
‖X̃±

1 − X̃±
2 ‖X∞(Ω±

s ) ≤ C‖X1 − X2‖Z∞(Γs). (59)

Without ambiguity we omit the notation X̃± for keeping only X̃.

Proof. Estimates (58) and (59) are straightforwardly deduced from the elliptic regularity of system (57) in
H5/2(Ω±

s ). Next, recalling that the differential of A �→ detA is H �→ cof(A) : H, and that in dimension 2
the mapping A �→ cof(A) is linear, for all t ≥ 0 we deduce from the mean value theorem

|det∇X̃(y, t) − 1|R ≤ sup
α∈[0,1]

|cof(αy + (1 − α)X̃(y, t))|R2×2 |X̃(y, t) − y|R2×2 ,

‖det∇X̃(·, t) − 1‖C(Ω±
s )

≤ C
(
1 + ‖X̃(·, t)‖L∞(Ω±

s )

)
‖X − Id‖Z∞(Γs).

Therefore, assuming ‖X − Id‖Z∞(Γs) small enough shows that det∇X̃(y, t) > C > 0 for all (y, t) ∈
Ωs × (0,∞). Then the local invertibility of X̃|Ω+

s
is due to the inverse function theorem, and the global

invertibility of X̃|Ω−
s

follows from Lemma A.1. �

A.2 Proof of Proposition 4.1 and Corollary 4.1

We start by recalling the two following lemmas that are needed for what follows. The first one can be
deduced from [29, Exercise 3.4, Chapter III].

Lemma A.2. For p± ∈ L2(Ω±
s ), there exists v±

p ∈ H1
0(Ω

±
s ) satisfying

− div v±
p = p± in Ω±

s , v±
p = 0 on ∂Ω±

s , (60)

and
‖v±

p ‖H1(Ω±
s ) ≤ C‖p±‖L2(Ω±

s ). (61)

The second lemma is given in [29, Theorem 1.1, Chapter IV].

Lemma A.3. For h± ∈ W, there exists a unique solution (v±
h , q±

h ) in V± × Q± to the Stokes problem
⎧
⎪⎨

⎪⎩

−div σ(v±
h , q±

h ) = 0 and div v±
h = 0 in Ω±

s ,

v+
h = 0 on ∂Ω,

v±
h = h± on Γs.

(62)
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Moreover, it satisfies

‖v±
h ‖H1(Ω±

s ) + ‖q±
h ‖L2(Ω±

s ) ≤ C‖h±‖H1/2(Γs). (63)

We are now in position to prove Proposition 4.1 and Corollary 4.1.

Proof of Proposition 4.1. We adopt the method used for proving [63, Lemma 6, p. 144]. Recall the
definition of the bilinear form

M(u, v) = 2ν〈ε(u+), ε(v+)〉
L2(Ω+

s ) + 2ν〈ε(u−), ε(v−)〉
L2(Ω−

s )

−〈p+,div v+〉L2(Ω+
s ) − 〈q+ div u+〉L2(Ω+

s ) − 〈p−,div v−〉L2(Ω−
s ) − 〈q−,div u−〉L2(Ω−

s )

−〈λ+, v+ − ϕ〉W′;W − 〈μ+, u+ − φ〉W′;W − 〈λ−, v− − ϕ〉W′;W − 〈μ−, u− − φ〉W′;W,

with the notation u = (u+, p+, u−, p−, λ+, λ−, φ) and v = (v+, q+, v−, q−, μ+, μ−, ϕ) ∈ V.

Step 1. Choose v1 = (u+,−p+, u−,−p−,−λ+,−λ−, φ). Then

M(u, v1) = 2ν
(
‖ε(u+)‖2

L2(Ω+
s )

+ ‖ε(u−)‖2
L2(Ω−

s )

)
. (64)

Step 2. Choose v2 = (v+
p , 0, v−

p , 0, 0, 0, 0), where v±
p ∈ H1

0(Ω
±
s ) is the solution of system (60) corresponding

to p±, satisfying (61). Then, using successively the Cauchy-Schwarz and the Young’s inequalities for any
α > 0, we obtain

M(u, v2) = 2ν〈ε(u+), ε(v+
p )〉

L2(Ω+
s ) + 2ν〈ε(u−), ε(v−

p )〉
L2(Ω−

s ) + ‖p+‖2
L2(Ω+

s )
+ ‖p−‖2

L2(Ω−
s )

≥ ‖p+‖2
L2(Ω+

s )
+ ‖p−‖2

L2(Ω−
s )

− αν‖ε(u+)‖2
L2(Ω+

s )
− αν‖ε(u−)‖2

L2(Ω−
s )

− ν

α
‖ε(v+

p )‖2
L2(Ω+

s )
− ν

α
‖ε(v−

p )‖2
L2(Ω−

s )
.

Furthermore, combining the Korn’s inequality for v±
p and the estimate (61), we deduce

M(u, v2) ≥
(

1 − Cν

α

)(
‖p+‖2

L2(Ω+
s )

+ ‖p−‖2
L2(Ω−

s )

)
− αν

(
‖ε(u+)‖2

L2(Ω+
s )

+ ‖ε(u−)‖2
L2(Ω−

s )

)
, (65)

where the constant C > 0 is independent of α > 0.
Step 3. Choose v3 = (v+

hn
, q+

hn
, v−

hn
, q−

hn
, 0, 0, 0), where (v±

hn
, q±

hn
) is the solution of the Stokes system (62)

with v±
hn |Γ = ‖λ±‖W′h±

n as data, where the sequences (h±
n )n are such that ‖h±

n ‖W = 1 and −〈λ±, h±
n 〉W′;W

→ ‖λ±‖W′ . Then for some β > 0, the same combination of the Cauchy-Schwarz and Young’s inequalities
yields

M(u, v3) = 2ν〈ε(u+), ε(v+
hn

)〉
L2(Ω+

s ) + 2ν〈ε(u−), ε(v−
hn

)〉
L2(Ω−

s )

−〈q+
hn

,div u+〉L2(Ω−
s ) − 〈q−

hn
,div u−〉L2(Ω−

s ) − 〈λ+, h+
n 〉W′,W − 〈λ−, h−

n 〉W′,W

≥ −〈λ+, h+
n 〉W′,W − 〈λ−, h−

n 〉W′,W

− 1
β

(
ν‖ε(v+

hn
)‖2

L2(Ω+
s )

+ ‖q+
hn

‖2
L2(Ω+

s )
+ ν‖ε(v−

hn
)‖2

L2(Ω−
s )

+ ‖q−
hn

‖2
L2(Ω−

s )

)

−β
(
ν‖ε(u+)‖2

L2(Ω+
s )

+ ‖div u+‖2
L2(Ω+

s )
+ ν‖ε(u−)‖2

L2(Ω−
s )

+ ‖div u−‖2
L2(Ω−

s )

)
.

Estimate (63) yields ‖vhn
‖H1(Ω±

s ) + ‖q±
hn

‖L2(Ω±
s ) ≤ C‖λ±‖W′ , and by passing to the limit we deduce

M(u, v3) ≥
(

1 − C

β

)
(‖λ+‖2

W′ + ‖λ−‖2
W′

) − Cβν
(
‖ε(u+)‖2

L2(Ω+) + ‖ε(u−)‖2
L2(Ω−)

)
, (66)

where here again the generic constant C > 0 is independent of β > 0.
Step 4. Choose v4 = (0, 0, 0, 0, φ, φ, 0). With the Young’s inequalities we estimate

M(u, v4) = 2‖φ‖2
W − 〈φ, u+〉W′;W − 〈φ, u−〉W′;W ≥ 2‖φ‖2

W − ‖φ‖W′‖u+‖W − ‖φ‖W′‖u−‖W,

M(u, v4) ≥ ‖φ‖2
W − 1

2
(‖u+‖2

W + ‖u−‖2
W

)
,
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M(u, v4) ≥ ‖φ‖2
W − C

(‖u+‖2
V + ‖u−‖2

V

)
, (67)

where C > 0 is deduced from the constant of the trace operators and those of the Korn’s inequality.
Step 5. Choose v = v1 + γ2v2 + γ3v3 + γ4v4, for some positive constants γ2, γ3 and γ4. Then, the

estimates (64)–(67) yields

M(u, v) ≥ (2ν − ανγ2 − βνγ3 − Cγ4)
(
‖ε(u+)‖2

L2(Ω+) + ‖ε(u−)‖2
L2(Ω−)

)

+γ2

(
1 − Cν

α

)(
‖p+‖2

L2(Ω+) + ‖p−‖2
L2(Ω−)

)
+ γ3

(
1 − C

β

)
(‖λ+‖2

W′ + ‖λ−‖2
W′

)
+ γ4‖φ‖2

W.

By choosing α and β large enough (α > Cν and β > C), and next γ2, γ3 and γ4 small enough, we get

M(u, v) ≥ δ‖u‖2, (68)

for some constant δ > 0, after having used the Korn’s inequality of Lemma 2.0. It remains us to verify
that the norm of v so chosen is controlled by the norm of u, namely the estimate ‖v‖ ≤ C‖u‖, which

holds from (61) and (63). Thus we obtain
M(u, v)

‖v‖ ≥ C‖u‖, which enables us to complete the proof.

Proof of Corollary 4.1. The result is a direct consequence of the Banach-Nečas-Babuška theorem (see [27,
Theorem 2.6, page 85]). The continuity of the linear mapping G is obvious. Given the inf-sup condition
of Proposition 4.1, it remains us to verify the injectivity property for the bilinear form. Let u ∈ V be
such that M(u, v) = 0 for all v ∈ V. It is sufficient to choose v like in the last step of the proof of
Proposition 4.1, so that (68) holds, and implies u = 0, which concludes the proof.
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