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ABSTRACT
The purpose of this paper is to model mathematically certain mechanical aspects
of defibrillation. The time deformation of the heart tissue is modeled with the elas-
todynamics equations dealing with the displacement field as main unknown. These
equations are coupled with a pressure whose variations characterize the defibrilla-
tion process. The pressure variable corresponds to a Lagrange multiplier associated
with the so-called global injectivity condition. We develop a hybrid optimal con-
trol approach in a general framework that covers in particular the maximization
of the variations of this pressure, and also the time the maximum is reached. The
control operator is distributed, and can be described in a form that corresponds to
geometric aspects of the modeling. For mathematical convenience a damping term
is added, and mathematical analysis based on the Lp-parabolic maximal regularity
is provided for the state equations and the rigorous derivation of optimality con-
ditions. Numerical simulations for a toy-model exploit these optimality conditions
and illustrate the capacity of the approach.
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1. Introduction

Defibrillation of the heart in case of arrhytmias is realized with the use of electric
shocks acting on muscular tissues, leading to a reset of its electrical activity and thus
the re-oxygenation of the ill area. Mechanically, the oxygenation can be related to
the arterial pressure, exerted by the blood on the walls of arteries as it flows through
the circulatory system [5]. Mathematically this pressure corresponds to a Lagrange
multiplier associated with the constraint of constant global volume of the tissues, as
they are crossed by blood, considered to be an incompressible fluid. The time variation
of this pressure quantifies shape variations of the heart domain via its deformation, and
thus the efficiency of the defibrillation. The time at which these variations occur is not
imposed, and is actually let free, in order to choose the best time for the most efficient
contraction. Thus, choosing an optimal time τ at which the maximum is reached is
of importance, as it can improve the efficiency of the defibrillation. From a control
point of view, this corresponds to a maximization problem of a function of the state
variables, optimizing both a control function and time parameter of the optimum. This
constitutes a type of hybrid optimal control problem [9, 10]. We refer to [4] for more
details on related optimal control problems arising in electro-cardiology.

The focus of the present article lies in the mathematical modeling of mechanical
aspects of the heart deformation. The heart tissues are considered as an hyperelastic
material. By applying a distributed control function on a part of the heart, the tissue
is suddenly deformed. This organ is meanwhile crossed by blood, assumed to be
incompressible, and so the total volume inside the heart remains constant through
the time. Considering that the exterior part of the boundary of the domain is only
subject to rigid displacements (see Figure 1), it means that the total volume of the
heart domain itself remains constant through the time. A complete realistic modeling
of such a problem would require multiphysics coupling, in particular concerning the
complex geometry of the heart domain and connected arteries, and also the electrical
aspects. Due to the obvious complexity that arises when modeling defibrillation, we
address in this article a simplified version of the problem, that still involves unsteady
nonlinear elasticity models and general optimal control formulation. The analysis
and computation are non-trivial topics too. For mathematical convenience a damping
effect is added, in order to facilitate the rigorous analysis of the underlying dynamics
as well as the corresponding optimal control problem.

ΓD

ΓN

Ω

Figure 1. Slice representation of domain Ω. We impose u = 0 on the exterior boundary ΓD, and the interior
the boundary ΓN is subject to Neumann conditions.
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1.1. Elastodynamics equations with damping and global injectivity
constraint.

In a smooth bounded domain Ω of Rd (d ≤ 3) we consider the elastodynamics system
with damping and global volume preserving constraint. The unknown are a displace-
ment field denoted by u, and a pressure variable denoted by p. The pressure p is
a Lagrange multiplier associated with the volume preserving constraint, and depends
only on the time variable. The control operator is distributed, represented by a smooth
mapping ξ 7→ f(ξ). The initial state is given by the couple (u0, u̇0). The couple (u, p)
satisfies the following system:

ü− κ∆u̇− div (σ(∇u)) = f(ξ) in Ω× (0, T ), (1a)

κ
∂u̇

∂n
+ σ(∇u)n+ p cof(I +∇u)n = g on ΓN × (0, T ), (1b)∫

Ω
det(I +∇u) dΩ =

∫
Ω

det(I +∇u0) dΩ in (0, T ), (1c)

u = 0 on ΓD × (0, T ), (1d)

u(·, 0) = u0, u̇(·, 0) = u̇0 in Ω. (1e)

The tensor field σ(∇u) is derived from the elasticity model that we adopt. The damp-
ing term κ∆u̇ is added for the sake of mathematical convenience. Indeed, it enables
us to use well-established results for parabolic equations, while the original system
is hyperbolic and nonlinear. The constraint (1c) is the so-called Ciarlet-Nečas global
injectivity condition, studied in [7]. It represents the time preservation of the total
volume of Ω under the deformation Id + u. The right-hand-side g in (1b) represents
possible given surface forces. Local-in-time wellposedness for system (1) has been es-
tablished in [12]. In the present paper, for the analysis we prefer to assume smallness of
the data rather than relying on small time T > 0, as it offers more straightforward well-
posedness results which rely on the application of the inverse function theorem. The
derivation of other type of existence results (like global wellposedness), that would not
require smallness assumptions for example, would go beyond the scope of the present
article. Note that under smallness assumptions we can keep the displacement u small
enough, so that the deformation Id +u remains invertible, that will be assumed in the
rest of the paper.

1.2. A hybrid optimal control problem.

We assume that the control function ξ acts on a subdomain ω ⊂ Ω. The goal is to
maximize an objective function Φ(1) at time τ . Consider a cost functional c, the general
optimal control problem that the present paper proposes to address is the following: max

ξ∈Xp,T (ω),τ∈(0,T )

(
J(ξ, τ) :=

∫ T

0
c(u, u̇, ξ) dt+ φ(1)(u, u̇)(τ) + φ(2)(u, u̇)(T )

)
,

subject to (1).

(P)
The control space Xp,T (ω) will be defined later. The functional φ(2) represents the

terminal cost, and φ(1) the objective functional that we want to maximize at time τ .
Note that in the formulation of Problem (P), the state variables are coupled with
the time parameter τ to be optimized. The values of the state variables at time τ
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depend on the control function ξ. Therefore the two control variables, ξ and τ are
coupled in a complex manner, defining why we call such a problem a hybrid optimal
control problem. This type of problems were treated in [9, 10] when dealing with a
time-parameter, and in [11] when dealing with a space parameter.

1.3. On the choice of the objective function.

For example we can decide to maximize the variations of the pressure p, on a short
time interval (τ, τ + ε), where the parameter τ is let free and also chosen optimally,
while ε > 0 is fixed and chosen as small as possible. This is our original motivation,
related to the modeling of the defibrillation process. For several reasons, one would
not make tend ε to 0, as the pressure variable may not necessarily be differentiable in
time in view of the regularity of the data and the functional framework in which the
unknown of system (1) will be considered. Besides, for practical realization it may not
be possible in practice to choose technically ε as small as desired. Problem (P) would
then involve the following objective function at time τ :

φ1(u, u̇)(τ) =
p(τ + ε)− p(τ)

ε
. (2)

From equation (1b) (with g = 0) the variable p is indeed a function of (u, u̇):

p = − 1

|(Id + u)(ΓN )|

∫
ΓN

(
κ
∂u̇

∂n
+ σ(∇u)n

)
dΓN ,

with

|(Id + u)(ΓN )| =
∫

ΓN

|cof(I +∇u)n|RddΓN .

In (2), assuming that the parameter ε could be supposed to tend towards zero would
lead to maximize directly the time-derivative of the pressure. This would require more
regularity to consider for the state variables, and would also involve to incorporate u,
u̇ and ü in the objective function, leading to undesirable complexities.

1.4. Methodology.

The type of objective functional that we consider in Problem (P) requires that the
state variables u and u̇ are continuous in time, with values in smooth trace spaces.
Therefore a strong functional framework is adopted, corresponding to the so-called
Lp-maximal parabolic regularity, leading us to assume that a solution u of (1) satisfies

u̇ ∈ Lp(0, T ; W2,p(Ω)) ∩W1,p(0, T ; Lp(Ω)),

with p > 3. See sections 2.3 and 3 for more details. With the help of results obtained
in [1, 16], we first study system (1) linearized around 0, in order to deduce local
existence of solutions for (1), while assuming that the data – initial conditions and
right-and-sides – small enough. We also prove wellposedness for a non-autonomous lin-
ear system (namely system (1) linearized around a non-trivial state) that will be used
for deriving rigorously optimality conditions. From there we are in position to address
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(u, u̇) −→ (P) −→ J
?

99K ∇J
µ
y µ

y µ
y xµ−1

(ũ, ˙̃u) −→ (P̃) −→ J̃ −→ ∇J̃

Figure 2. Transformation of the variables (u, u̇) via a change of variable µ, leading to a new problem (P̃)

with a new objective function J̃ , for which the derivation of optimality conditions is tractable.

the question of optimality conditions for Problem (P). Due to the (lack of) regularity
of the given right-hand-sides, the time-derivative of the state variable, namely ü, is not
continuous in time, and therefore it is not possible to determine the optimal parame-
ter τ directly by deriving in time the function φ(1)(u, u̇). In order to uncouple the time
parameter and the state variables, we first introduce a change of variable, and refor-
mulate Problem (P) in terms of the new variables, like in [9, 10] (see Figure 1.4). Next
we introduce an adjoint system whose wellposedness is obtained by transposition, via
the non-autonomous linear system aforementioned. Necessary first-order optimality
conditions are then derived and expressed in terms of the state, the control function,
the time parameter τ and the adjoint state. Further, the optimality conditions so ob-
tained are re-expressed in terms of the original state variables, by reversing the change
of variables previously used. This is convenient for numerical implementation, even if
this was not the approach adopted in [9, 10].

These new expressions for the optimality conditions can be more suitable for per-
forming numerical illustrations. The latter are performed on a 1D model with finite
elements approximation combined with an augmented Lagrangian technique.

1.5. Plan.

The paper is organized as follows: Notation, assumptions and functional framework
are provided in section 2. In particular, we show with classical examples in section A.2
that the assumptions made on the strain energy in section 2.4 are reasonable. Section 3
is dedicated to wellposedness results in the context of the Lp-maximal parabolic reg-
ularity. In section 3.1 we study system (1) linearized around 0, leading in section 3.2
to local existence results for system (1) and also for its linearized version around some
non-trivial states. Solutions for a general adjoint system are studied in section 3.3.
Next section 4 is devoted to the derivation of optimality conditions: Problem (P)
is transformed in section 4.1, the corresponding control-to-state mapping is studied
in section 4.2, and the main results are obtained in sections 4.4 and 4.5. Numerical
illustrations are presented in section 5. Final comments are given in the conclusion
(section 6). In the Appendix, we present modeling aspects of the problem, in partic-
ular the formal derivation of the optimality conditions from a Lagrangian mechanics
perspective (section A.3), the investigation of classical elasticity models with regards
to the assumptions made in this article (section A.2) and the physical description of
the control operator (section A.4).
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2. Notation and assumptions

Let us introduce the notation for functional spaces and assumptions on the data and
the elasticity model. The reader is invited to refer to the present section when reading
the rest of the paper.

2.1. General notation

We denote by u · v the inner product between two vectors u, v ∈ Rd, and the
corresponding Euclidean norm by |u|Rd . We define the tensor product u ⊗ v ∈ Rd×d,
such that (u ⊗ v)ij := uivj . The inner product between two matrices A, B ∈ Rd×d
is given by A : B = trace(ATB), and we recall that the associated Euclidean
norm satisfies |AB|Rd×d ≤ |A|Rd×d |B|Rd×d . The tensor product between matrices
is denoted by A ⊗ B ∈ Rd×d×d×d, such that for all matrix C ∈ Rd×d we have
(A⊗B)C := (B : C)A ∈ Rd×d.

On the cofactor matrix. We denote by cof(A) the cofactor matrix of any matrix
field A. Recall that this is a polynomial function of the coefficients of A. When A is
invertible, the following formula holds

cof(A) = (det(A))A−T .

Recall that H 7→ (cofA) : H is the differential of A 7→ det(A) at point A. Further,
recall the differential of A 7→ cof(A), given by the following formula

DA(cof).H =
1

detA

(
(cof(A)⊗ cof(A))H − cof(A)HT cof(A)

)
,

for all matrix H ∈ Rd×d.

2.2. Geometric assumptions and the global injectivity condition

The domain Ω ⊂ Rd (with d = 2 or 3) is assumed to be smooth and bounded. Its
boundary ∂Ω is made of two smooth parts ΓD and ΓN such that ΓD ∩ ΓN = ∅ (see
Figure 1), and their respective surface Lebesgue measures are positive. We assume
that ΓD and ΓN are smooth in the sense that the surfaces ΓD and ΓN are regular,
meaning that at any point of ΓD and ΓN we can define a tangent plane. Therefore
the outward unit normal of ∂Ω is well-defined. On ΓN , we will assume that n ∈
W2−1/p,p(ΓN ).
The deformation gradient tensor associated with the displacement field u is denoted
by

Φ(u) = ∇(Id + u) = I +∇u.

Equation (1c) translates the fact that the total volume of Ω must remain constant
over time. Differentiating this equality in the direction v yields∫

Ω
det(Φ(u))dΩ =

∫
Ω

det(Φ(u0))dΩ ⇒
∫

Ω
cof(Φ(u)) : ∇v dΩ = 0.
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Further, using the Piola’s identity, we have div(cof(Φ(u))T v) = cof(Φ(u)) : ∇v, and
then the divergence formula enables us to rewrite the quantity above as an integral
over ΓN only, as follows∫

Ω
cof(Φ(u)) : ∇v dΩ =

∫
ΓN

v · cof(Φ(u))n dΓN = 0,

if we assume v|ΓD
= 0. In particular, equation (1c) can be equivalently replaced by its

time-derivative, namely ∫
ΓN

u̇ · cof(Φ(u))n dΓN = 0. (3)

dealing with the boundary ΓN only.

2.3. Functional spaces

Throughout we consider the exponent p > 3. In order to distinguish scalar fields,
vector fields and matrix fields, we use the following notation

Lp(Ω) =

{
ϕ : Ω→ R |

∫
Ω
|ϕ|pRdΩ <∞

}
, Lp(Ω) = [Lp(Ω)]d, Lp(Ω) = [Lp(Ω)]d×d,

that we transpose by analogy to other types of Lebesgue and Sobolev spaces. Denote

W1,p
D,0(Ω) :=

{
ϕ ∈W1,p(Ω) | ϕ|ΓD

= 0
}
.

The displacement u and its time-derivative u̇ are considered in the spaces given below:

u ∈ Up,T (Ω) := W1,p(0, T ; W2,p(Ω) ∩W1,p
0,D(Ω)) ∩W2,p(0, T ; Lp(Ω)),

u̇ ∈ U̇p,T (Ω) := Lp(0, T ; W2,p(Ω) ∩W1,p
0,D(Ω)) ∩W1,p(0, T ; Lp(Ω)).

Given r ∈ (1,∞), we denote by r′ its dual exponent satisfying 1/r + 1/r′ = 1. The
trace space for u̇ ∈ U̇p,T (Ω) involves the Besov spaces obtained by real interpolation

as
(
Lp(Ω); W2,p(Ω)

)
1/p′,p

=: B2/p′

pp (Ω) and
(
Lp(Ω); W1,p

0,D(Ω)
)

1/p′,p
=: B̊

1/p′

pp (Ω), which

coincide with W2/p′,p(Ω) and W
1/p′,p
0,D (Ω), respectively. See for instance [19]. The initial

conditions are assumed to lie in the trace space
{

(u(0), u̇(0)) | u ∈ Up,T (Ω)× U̇p,T (Ω)
}

,

namely:

(u0, u̇0) ∈ U (0,1)
p (Ω) :=

(
W2,p(Ω) ∩W1,p

0,D(Ω)
)
×
(
W2/p′,p(Ω) ∩W

1/p′,p
0,D (Ω)

)
.

We refer to [6] and [1, section 6] for more details. The choice of such a strong functional
frame is motivated by the fact that the trace space described above guarantees that the
gradient of the displacement is continuous in space. Further, introduce the following
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spaces

Fp,T (Ω) := Lp(0, T ; Lp(Ω)),

Gp,T (ΓN ) := W1/2−1/2p,p(0, T ; Lp(ΓN )) ∩ Lp(0, T ; W1−1/p,p(ΓN )),

Hp,T (ΓN ) := W1−1/2p,p(0, T ; Lp(ΓN )) ∩ Lp(0, T ; W2−1/p,p(ΓN )),

Hp,T := W1−1/2p,p(0, T ;R).

Following [16], the Neumann boundary condition (1b) is considered in Gp,T (ΓN ), and
the trace of u̇ on ΓN is considered in Hp,T (ΓN ). More precisely, we recall the following
boundary trace embedding (see for example [14, Lemma 3.5]):

‖v|ΓN
‖Hp,T (ΓN ) ≤ C‖v‖U̇p,T (Ω), (4)

where the constant C > 0 is independent of v. The constraint (3) involves the trace
of u̇ on ΓN , and the space Hp,T is where this constraint (3) is considered (namely
constraint (1) derived in time). Further, we also recall this other trace embedding:∥∥∥∥∂v∂n

∥∥∥∥
Gp,T (ΓN )

≤ C‖v‖U̇p,T (Ω). (5)

In the Hilbert case, we will need the following estimate:∥∥∥∥∂v∂n
∥∥∥∥

W1/(2p′)(0,T ;H1/2−1/p(ΓN ))′
≤ C‖v‖Lp(0,T ;H2(Ω))∩W1,p(0,T ;L2(Ω)). (6)

Note that the trace space of Lp(0, T ; H2(Ω)) ∩ W1,p(0, T ; L2(Ω)) coincides
with H2/(p′)(Ω).
Finally, the pressure variable p that appears in the Neumann condition will be con-
sidered such that

p ∈ Pp,T := W1/2−1/2p,p(0, T ;R) = W1/(2p′),p(0, T ;R).

2.4. Assumptions on the strain energy and operator notation

In th rest of the paper we will assume that the functionals which appear in Prob-
lem (P), namely c, φ(1) and φ(2), are Fréchet-differentiable on Up,T (Ω) × U̇p,T (Ω) ×
Xp,T (ω) for functional c, and on Up,T (Ω) × U̇p,T (Ω) for functionals φ(1) and φ(2). Let
us give the assumptions that we make on the other operators of the problem.

2.4.1. Notation for the strain energy

Recall that for p > d, the space W1,p(Ω) is an algebra. In particular, there exists a
positive constant C, depending only on Ω and p, such that for all A, B ∈W1,p(Ω), we
have

‖AB‖W1,p(Ω) ≤ C‖A‖W1,p(Ω)‖B‖W1,p(Ω). (7)

See for instance [3, Lemma A.1]. Therefore the different products between the
elasticity-related tensors will be mainly understood in W1,p(Ω). Recall the expression
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of the deformation gradient Φ(u) = I +∇u introduced previously. The strain energy
of the elastic material is denoted by W, and is a function of the Green–Saint-venant
strain tensor

E(u) :=
1

2

(
Φ(u)TΦ(u)− I

)
=

1

2

(
(I +∇u)T (I +∇u)− I

)
.

We denote classically [8] by Σ̌ the differential of W:

Σ̌(E) =
∂W
∂E

(E),

and by Σ its composition by E(u) as follows

Σ(u) :=
∂W
∂E

(E(u)).

We further introduce

σ(∇u) = (I +∇u)Σ(u) = Φ(u)Σ(u) = (I +∇u)
∂W
∂E

(E(u)),

that is the operator which appears in system (1). Note that σ is a function of ∇u
only, since the strain energy is chosen to be a function of the Green – St-Venant
strain tensor E(u), which is itself a function of ∇u only. The derivation of system (1)
from W is given in section A.3.

The tensor E linearized around u in the direction v is given by

E′(u).v =
1

2

(
Φ(u)T∇v +∇vTΦ(u)

)
.

The linearized systems, around 0 in section 3.1 and around some unsteady state u in
sections 3.2 and 3.3, involve the differentials of σ(∇u) and cof(Φ(u)) (with respect
to ∇u), denoted respectively by σL(∇u) and σN (∇u), and given as follow

σL(∇u).∇v = ∇vΣ(u) + (I +∇u)
∂2W
∂E2

(E(u)).(E′(u).v), (8a)

σN (∇u).∇v =
1

detΦ(u)

(
(cofΦ(u)⊗ cofΦ(u))∇v − cofΦ(u)∇vT cofΦ(u)

)
. (8b)

Note that σL(∇u) is symmetric, by assumptions A2 and A3. A variational formulation
of its expressions gives, for all vector field w

(σL(∇u).∇v) : ∇w = (∇vΣ(u)) : ∇w +

(
∂2W
∂E2

(E(u)).(E′(u).v)

)
: (E′(u).w).

The operator v 7→ (σN (∇u).∇v)n is symmetric too. Indeed, for all smooth test func-
tion ζ such that ζ|ΓD

= 0, we first express, using the divergence formula and the Piola’s
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identity∫
ΓN

ζ · cof(Φ(u))ndΓN =

∫
ΓN

(cof(Φ(u))T ζ) · ndΓN =

∫
Ω

div
(
cof(Φ(u))T ζ

)
dΩ

=

∫
Ω

cof(Φ(u)) : ∇ζdΩ.

Next, differentiating the left- and right-hand-sides of this equality yields∫
ΓN

ζ · (σN (∇u).∇v)n dΓN =

∫
Ω

(σN (∇u).∇v) : ∇ζ dΩ

=

∫
Ω

1

detΦ(u)

(
(cof(Φ(u)) : ∇v)(cof(Φ(u)) : ∇ζ)− (cof(Φ(u))∇vT )(cof(Φ(u))∇ζT )

)
dΩ.

This symmetric form shows that the operator v 7→ (σN (∇u).∇v)n is symmetric, and
in particular we have∫

ΓN

ζ · (σN (∇u).∇v)n dΓN =

∫
ΓN

(σN (∇u).∇ζ)n · v dΓN .

When dealing with the adjoint system (from section 3.3) we will still use σN (∇u)∗.∇ζ,
for the sake of consistency.

2.4.2. Assumptions on the strain energy

First, we define what we call an admissible operator for a second-order linear parabolic
system.

Definition 2.1. Introduce the following Hilbert spaces

V0(Ω) :=
{
v ∈ H1(Ω) | v|ΓD

= 0
}
, V0(ΓN ) := H1/2.

Consider the following abstract system

ü− κ∆u̇− div(B.∇u) = f in Ω× (0, T ),

κ
∂u̇

∂n
+ (B.∇u)n = g on ΓN × (0, T ),

u = 0 on ΓD × (0, T ),
u(·, 0) = u0, u̇(·, 0) = u̇0 in Ω,

(9)

Given T > 0, we say that the operator B is admissible if for all

f ∈ L2(0, T ;V0(Ω)′), g ∈ L2(0, T ;V0(ΓN )′), u0 ∈ L2(Ω), u̇0 ∈ L2(Ω)

there exists a unique solution u̇ to system (9) such that u̇ ∈ L2(0, T ;V0(Ω)) ∩
H1(0, T ;V0(Ω)′).

The functional framework in the definition above corresponds to the standard
notion of weak solutions in Hilbert spaces for a second-order parabolic system.

11



We summarize the set of general assumptions we make on the strain energyW, and
that are needed for the analysis. Using the notation introduced previously from W,
these assumptions are listed below:

A1 The Nemytskii operator W : W1,p(Ω) 3 E 7→ W(E) ∈ R is twice continuously
Fréchet-differentiable.

A2 For all matrix E ∈ Rd×d the tensor Σ̌(E) defines a symmetric matrix field.
A3 The operator σL(0) is admissible in the sense of Definition 2.1.

Assumptions A1−A2 are quite natural. About Assumption A3, we have from (8a)
the following expression:

σL(0).∇v = ∇vΣ(0) +
∂2W
∂E2

(0).(E′(0).v) = ∇vΣ(0) +
1

2

∂2W
∂E2

(0).(∇v +∇vT ).

In section A.2 we show that well-known examples of strain energies from the literature
fulfill these assumptions.

2.4.3. On the control operator

The control operator, denoted as follows

f : Xp,T (ω) 3 ξ 7→ f(ξ) ∈ Fp,T (Ω),

is distributed on a subdomain ω ⊂⊂ Ω, as it appears in equation (1a). We assume that
f is Fréchet-differentiable on Xp,T (ω), with values in Fp,T (Ω). We refer to section A.4
for modeling related comments on the control operator. In particular, f may possibly
be linear.

3. Wellposedness results

The goal of this section is to establish existence of solutions for system (1), and also for
its linearized version around a non-trivial state, which will be used in section 4. We first
show in section 3.1 that the linearized system around 0 is well-posed in the context of
the Lp-maximal regularity. Via the inverse function theorem, we deduce in section 3.2
that the same property holds for the state system (1) under smallness assumptions on
the data, and also for the non-autonomous linear system, namely system (1) linearized
around a non-trivial state (u, p). We rely on these results for studying in section 3.3
the adjoint system.

3.1. Lp-maximal regularity for the linear autonomous system

System (1) linearized around (u, p) = (0, 0) writes formally as follows:

ü− κu̇− div(σL(0).∇u) = f in Ω× (0, T ),

κ
∂u̇

∂n
+ (σL(0).∇u)n+ pn = g on ΓN × (0, T ),∫

ΓN

u · n dΓN = h on (0, T ),

u = 0 on ΓD × (0, T ),
u(·, 0) = u0, u̇(·, 0) = u̇0 in Ω.

(10)
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The goal of this subsection is to provide wellposedness for system (10), which is stated

in Corollary 3.3. Let us first omit the constraint

∫
ΓN

u ·n dΓN = h, and the associated

pressure p. We state the following result dealing with a general second-order linear
parabolic system with non-homogeneous right-hand-sides and initial value conditions.

Proposition 3.1. Let be T ∈ (0,∞). Assume that f ∈ Fp,T (Ω), g ∈

Gp,T (ΓN ), (u0, u̇0) ∈ U (0,1)
p (Ω) with the compatibility condition κ

∂u̇0

∂n
+

(σL(0).∇u0)n = g(·, 0) on ΓN . Then the following system

ü− κ∆u̇− div(σL(0).∇u) = f in Ω× (0, T ),

κ
∂u̇

∂n
+ (σL(0).∇u)n = g on ΓN × (0, T ),

u = 0 on ΓD × (0, T ),
u(·, 0) = u0, u̇(·, 0) = u̇0 in Ω,

(11)

admits a unique solution u ∈ Up,T (Ω). Further, the following estimate holds

‖u‖Up,T (Ω) ≤ C(T )
(
‖f‖Fp,T (Ω) + ‖g‖Gp,T (ΓN ) + ‖(u0, u̇0)‖U(0,1)

p (Ω)

)
,

where the constant C(T ) > 0 is non-decreasing with respect to T .

Proof. Such a result falls into the frame of the so-called Lp-maximal parabolic regu-
larity [13]. Given Assumption A3, the result stated in [1, Theorem 6.1] addresses the
question of existence of solutions for this type of second-order autonomous equations
with homogeneous Dirichlet conditions on ∂Ω. System (11) can be rewritten in terms
of u̇ as main unknown variable, and thus becomes a first-order parabolic system. Then
the results provided in [16] when considering mixed boundary conditions apply, and
thus we obtain the Lp-maximal regularity property for system (11).

Now we establish the same type of results for system (10), when its constraint is
homogeneous:

Proposition 3.2. Let be T ∈ (0,∞), and assume the hypotheses of Proposition 3.1,
with additionally ∫

ΓN

u0 · n dΓN = 0.

Then the following system

ü− κ∆u̇− div(σL(0).∇u) = f in Ω× (0, T ),

κ
∂u̇

∂n
+ (σL(0).∇u)n+ pn = g on ΓN × (0, T ),∫

ΓN

u · n dΓN = 0 in (0, T ),

u = 0 on ΓD × (0, T ),
u(·, 0) = u0, u̇(·, 0) = u̇0 in Ω,

(12)
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admits a unique solution (u, p) ∈ Up,T (Ω)×Pp,T . Further, the following estimate holds

‖u‖Up,T (Ω) + ‖p‖Pp,T
≤ C(T )

(
‖f‖Fp,T (Ω) + ‖g‖Gp,T (ΓN ) + ‖(u0, u̇0)‖U(0,1)

p (Ω)

)
, (13)

where the constant C(T ) > 0 is non-decreasing with respect to T .

The proof of Proposition 3.2 is given in the section A.1.1. We deduce the same result
when the constraint of system (12) is non-homogeneous. More precisely, we consider
constraint of system (10) with h ∈ Hp,T = W1−1/(2p),p(0, T ;R).

Corollary 3.3. Let be T ∈ (0,∞), and assume f ∈ Fp,T (Ω), g ∈ Gp,T (ΓN ), h ∈
Hp,T , (u0, u̇0) ∈ U (0,1)

p (Ω) satisfying the compatibility conditions

g(·, 0) = κ
∂u̇0

∂n
+ (σL(0).∇u0)n on ΓN ,

h(0) =

∫
ΓN

u0 · n dΓN and ḣ(0) =

∫
ΓN

u̇0 · n dΓN .

Then there exists a unique solution (u, p) to the following system

ü− κ∆u̇− div(σL(0).∇u) = f in Ω× (0, T ),

κ
∂u̇

∂n
+ (σL(0).∇u)n+ pn = g on ΓN × (0, T ),∫

ΓN

u · n dΓN = h in (0, T ),

u = 0 on ΓD × (0, T ),
u(·, 0) = u0, u̇(·, 0) = u̇0 in Ω,

(14)

and it satisfies the following estimate

‖u‖Up,T (Ω)+‖p‖Pp,T
≤ C(T )

(
‖f‖Fp,T (Ω) + ‖g‖Gp,T (ΓN ) + ‖h‖Hp,T

+ ‖(u0, u̇0)‖U(0,1)
p (Ω)

)
,

where the constant C(T ) > 0 is non-decreasing with respect to T .

The technical proof of Corollary 3.3 is given in section A.1.2.

3.2. Local existence result for the state system

Define the mapping

K : Up,T (Ω)× Pp,T → Fp,T (Ω)× Gp,T (ΓN )×Hp,T × U (0,1)
p (Ω)

(u, p) 7→


ü− κ∆u̇− div(σ(∇u))

κ
∂u̇

∂n
+ σ(∇u)n+ p cof(Φ(u))n∫

Ω
det(Φ(u))dΩ

(u(·, 0), u̇(·, 0))

 .

We have K(0, 0) = (−div(σ(0)), σ(0)n, |Ω|, 0)T . From Corollary 3.3, the differential of
mapping K at (u, p) = (0, 0) is an isomorphism. Therefore, from the inverse function
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theorem, system (1) is locally wellposed. More precisely, we state the following result:

Proposition 3.4. Let be T ∈ (0,∞). There exists η > 0 such that if

‖f + div(σ(0))‖Fp,T (Ω) + ‖g − σ(0)n‖Gp,T (ΓN ) + ‖(u0, u̇0)‖U(0,1)
p (Ω) ≤ η

with the compatibility condition κ
∂u̇0

∂n
+ σ(∇u0)n = g(·, 0) on ΓN , then system (1)

admits a unique solution (u, p) ∈ Up,T (Ω)× Pp,T .

Proof. Note that the smallness assumption on u0 ∈W2,p(Ω) implies∣∣∣∣|Ω| − ∫
Ω

det(Φ(u0))dΩ

∣∣∣∣ =

∣∣∣∣∫
Ω

det(Φ(0))dΩ−
∫

Ω

det(Φ(u0))dΩ

∣∣∣∣
≤ ‖∇u0‖W1,p(Ω) sup

α∈[0,1]

∫
Ω

‖cof(I + α∇u)‖dΩ

≤ Cη

d−1∑
i=0

ηi,

where we have used the mean-value theorem in the algebra W1,p(Ω). Therefore, pro-
vided that η > 0 is chosen small enough, the assumptions of the inverse function
theorem are satisfied, which yields the result.

Further, the differential of mapping K is also locally an isomorphism, that means
that system (1) linearized around some state (u, p) is well-posed, provided smallness
assumptions on (u, p). This is achieved by assuming the data small enough, in virtue
of Proposition 3.4. This non-autonomous linear system writes formally as follows,
where (v, q) denotes its unknown:

v̈ − κ∆v̇ − div(σL(∇u).∇v) = f in Ω× (0, T ),

κ
∂v̇

∂n
+
((
σL(∇u) + pσN (∇u)

)
.∇v

)
n+ q cof(Φ(u))n = g on ΓN × (0, T ),∫

ΓN

v · cof(Φ(u))n dΓN = 0 on (0, T ),

v = 0 on ΓD × (0, T ),
v(·, 0) = 0, v̇(·, 0) = 0, in Ω.

(15)

Recall that σN is introduced in (8b). Note that in the writing of system (15), only u
appears, not u̇, as the terms involving u̇ are linear in system (1). We state the following
result:

Proposition 3.5. Let be T ∈ (0,∞), and assume that (u, p) is small enough
in Up,T (Ω)×Pp,T . Then for all f ∈ Fp,T (Ω), g ∈ Gp,T (ΓN ) satisfying the compatibility
condition g(·, 0) = 0, system (15) admits a unique solution (v, q) ∈ Up,T (Ω) × Pp,T ,
and it satisfies

‖v‖Up,T (Ω) + ‖q‖Pp,T
≤ C(u, p)

(
‖f‖Fp,T (Ω) + ‖g‖Gp,T (ΓN )

)
. (16)

The constant C(u, p) > 0 is independent of (v, q).
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3.3. The adjoint system

Let us first rewrite the second-order linear system (15) in the form of a first-order
parabolic system, by setting (y0, y1) = (u, u̇) and (z0, z1) = (v, v̇). More generally we
consider the following system:

ż0 − z1 = f0 in Ω× (0, T ),
ż1 − κ∆z1 − div(σL(∇y0).∇z0) = f1 in Ω× (0, T ),

κ
∂z1

∂n
+
(

(σL + pσN )(∇y0).∇z0

)
n+ q cof (Φ(y0))n = g on ΓN × (0, T ),∫

ΓN

z0 · cof(Φ(y0))n dΓN = 0 in (0, T ),

z1 = 0 on ΓD × (0, T ),
z0(·, 0) = 0, z1(·, 0) = 0 in Ω.

(17)

Note that only y0 = u appears in the writing of system (17), not y1. Using Proposi-
tion 3.5, we state the following proposition:

Proposition 3.6. Let be T ∈ (0,∞), and assume that (y0, p) is small enough
in Up,T (Ω) × Pp,T . Then for all f0 ∈ U̇p,T (Ω), f1 ∈ Fp,T (Ω), g ∈ Gp,T (ΓN ) sat-
isfying the compatibility condition g(·, 0) = 0, system (15) admits a unique solu-
tion (z0, z1, q) ∈ Up,T (Ω)× U̇p,T (Ω)× Pp,T , and it satisfies

‖z0‖Up,T (Ω)+‖z1‖U̇p,T (Ω)+‖q‖Pp,T
≤ C(y0, p)

(
‖f0‖U̇p,T (Ω) + ‖f1‖Fp,T (Ω) + ‖g‖Gp,T (ΓN )

)
.

The constant C(y0, p) > 0 is independent of (z0, z1, q).

Proof. The first equation of system (17) derived in time, and combined with the
second equation, shows that variable z0 satisfies system (15), with respectively z0 in

the role of v, f1 + ḟ0 − κ∆f0 ∈ Fp,T (Ω) in the role of f , and g + κ
∂f0

∂n
∈ Gp,T (ΓN )

in the role of g. Proposition 3.5 states the existence and uniqueness of z0 ∈ Up,T (Ω),
which satisfies

‖z0‖Up,T (Ω) + ‖q‖Pp,T
≤ C(y0, p)

(
‖f1‖Fp,T (Ω) + ‖ḟ0‖Fp,T (Ω) + ‖∆f0‖Fp,T (Ω)

+‖g‖Gp,T (ΓN ) +

∥∥∥∥∂f0

∂n

∥∥∥∥
Gp,T (ΓN )

)
≤ CC(y0, p)

(
‖f0‖U̇p,T (Ω) + ‖f1‖Fp,T (Ω) + ‖g‖Gp,T (ΓN )

)
, (18)

where the constant C(y0, p) is the one of estimate (16). We still denote C(y0, p) con-
stants of type CC(y0, p). Further, the first equation of system (17), namely z1 = ż0−f0,
yields

‖z1‖U̇p,T (Ω) ≤ ‖z0‖Up,T (Ω) + ‖f0‖U̇p,T (Ω).

Combined with (18), we deduce the announced estimate and complete the proof.

We stress that solutions ((z0, z1), q) of system (17) are continuous on [0, T ] – with

values in U (0,1)
p (Ω) × R. Recall that our goal is to address Problem (P), involving

the functionals c : Up,T (Ω) × U̇p,T (Ω) × Xp,T (ω) → R, φ(1) : U (0,1)
p (Ω) → R and φ(2) :
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U (0,1)
p (Ω)→ R. Given τ ∈ (0, T ), ξ ∈ Xp,T (ω) and (y0, y1, p) ∈ Up,T (Ω)×U̇p,T (Ω)×Pp,T ,

we introduce the adjoint system, namely

−ζ̇0 − div(σL(∇y0)∗.∇ζ1) = −c′y0(y0, y1, ξ) in Ω× ((0, τ) ∪ (τ, T )),

−ζ̇1 − ζ0 − κ∆ζ1 = −c′y1(y0, y1, ξ) in Ω× (0, T ),(
(σL + pσN )(∇y0)∗.∇ζ1

)
n+ π cof(Φ(y0))n = 0 on ΓN × (0, T ),

κ
∂ζ1
∂n

= 0 on ΓN × (0, T ),

ζ1 = 0 on ΓD × (0, T ),
〈ζ1 ; cof(Φ(y0))n〉W1/(p′),p(ΓN )′,W1/(p′),p(ΓN ) = 0 in (0, T )

[ζ0]τ = φ
(1)′

y0 (y0, y1)(τ) and [ζ1]τ = φ
(1)′

y1 (y0, y1)(τ) in Ω,

ζ0(·, T ) = −φ(2)′

y0 (y0, y1)(T ), ζ1(·, T ) = −φ(2)′

y1 (y0, y1)(T ) in Ω.

(19)

We have introduced the notation [ζ]τ := lim
t→τ+

ζ(t) − lim
t→τ−

ζ(t) which describes the

jump of a variable ζ at time t = τ . We define solutions of the adjoint system (19)
by transposition.

Definition 3.7. Let be τ ∈ (0, T ) and (y0, y1, p, ξ) ∈ Up,T (Ω) × U̇p,T (Ω) × Pp,T ×
Xp,T (ω). We say that (ζ0, ζ1, π) is a solution of (19) associated with (y0, y1, p), if for

all (f0, f1, g) ∈ U̇p,T (Ω)×Fp,T (Ω)× Gp,T (ΓN ) we have

〈ζ0; f0〉U̇p,T (Ω)′,U̇p,T (Ω) + 〈ζ1; f1〉Fp,T (Ω)′,Fp,T (Ω) + 〈ζ1; g〉Gp,T (ΓN )′,Gp,T (ΓN )

= −
〈
c′y0(y0, y1, ξ) ; z0

〉
Up,T (Ω)′,Up,T (Ω)

−
〈
c′y1(y0, y1, ξ) ; z1

〉
U̇p,T (Ω)′,U̇p,T (Ω)

−
〈

(φ
(1)′

y0 (y0, y1), φ
(1)′

y1 (y0, y1)) ; (z0(·, τ), z1(·, τ))
〉
U(0,1)

p (Ω)′,U(0,1)
p (Ω)

−
〈

(φ
(2)′

y0 (y0, y1), φ
(2)′

y1 (y0, y1)) ; (z0(·, T ), z1(·, T ))
〉
U(0,1)

p (Ω)′,U(0,1)
p (Ω)

,

(20)

where (z0, z1, q) is the solution of system (17) with (y0, y1, p) and (f0, f1, g) as data.

Remark 1. Solutions (ζ0, ζ1) in the sense of Definition 3.7 lie in U̇p,T (Ω)′×Fp,T (Ω)′,
and therefore satisfy

ζ0 ∈ Lp
′
(0, T ; W2,p(Ω)′), ζ1 ∈ Lp

′
(0, T ; Lp

′
(Ω)), ζ1|ΓN

∈ Lp
′
(0, T ; W1/(p′),p(ΓN )′)

∇ζ1 ∈ Lp
′
(0, T ;W1,p(Ω)′),

∂ζ1

∂n
∈ Lp

′
(0, T ; W2−1/p,p(ΓN )′).

It is unnecessary to comment on the regularity of the variable π, playing the role of
Lagrange multiplier for the constraint imposed on ζ1 (sixth equation of system (19)).

We prove the existence and uniqueness of a very weak solution for system (19), in
the sense of Definition 3.7.

Proposition 3.8. Let be (y0, y1, p, ξ) ∈ Up,T (Ω)×U̇p,T (Ω)×Pp,T×Xp,T (ω). If (y0, p) is
small enough in Up,T (Ω)×Pp,T , then system (19) admits a unique solution (ζ0, ζ1, π) ∈
U̇p,T (Ω)′×Fp,T (Ω)′×Gp,T (ΓN )′, in the sense of Definition 3.7. Moreover, there exists
a constant C(y0, p) > 0 depending only on (y0, p) such that

‖(ζ0, ζ1)‖U̇p,T (Ω)′×Fp,T (Ω)′ ≤ C(y0, p)
(
‖c′y0(y0, y1, ξ)‖Up,T (Ω)′ + ‖c′y1(y0, y1, ξ)‖U̇p,T (Ω)′

+‖(φ(1)′

y0 (y0, y1)(τ), φ
(1)′

y1 (y0, y1)(τ))‖U(0,1)
p (Ω)′

+‖(φ(2)′

y0 (y0, y1)(T ), φ
(2)′

y1 (y0, y1)(T ))‖U(0,1)
p (Ω)′

)
.
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In particular, C(y0, p) is independent of c, φ(1) and φ(2).

Proof. Define the operator

Λ(y0, y1, p) : (f0, f1, g) 7→
(
z0, z1, (z0(·, τ), z1(·, τ)), (z0(·, T ), z1(·, T ))

)
,

where (z0, z1) is the solution of system (17). From Proposition 3.6, the linear opera-

tor Λ(y0, y1, p) is bounded from U̇p,T (Ω)×Fp,T (Ω)×Gp,T (ΓN ) into Up,T (Ω)×U̇p,T (Ω)×
U (0,1)
p (Ω) × U (0,1)

p (Ω). Therefore Λ(y0, y1, p)∗ is bounded from Up,T (Ω)′ × U̇p,T (Ω)′ ×
U (0,1)
p (Ω)′ × U (0,1)

p (Ω)′ into U̇p,T (Ω)′ ×Fp,T (Ω)′ × Gp,T (ΓN )′. Defining

(ζ0, ζ1, π) = −Λ(y0, y1, p)
∗
(
c′y0 (y0, y1, ξ), c

′
y1

(y0, y1, ξ), φ
(1)′
y0 (y0, y1), φ

(1)′
y1 (y0, y1), φ

(2)′
y0 (y0, y1), φ

(2)′
y1 (y0, y1)

)
,

we can verify that (ζ0, ζ1, π) is solution of system (19) in the sense of Definition 3.7.
For that we use the Green formula twice, and proceed by integration by parts in
(0, τ) ∪ (τ, T ). Uniqueness is due to the linearity of system (19). Indeed, if(
c′y0(y0, y1, ξ), c

′
y1(y0, y1, ξ), φ

(1)′

y0 (y0, y1)(τ), φ(1)′

y1 (y0, y1)(τ), φ(2)′

y0 (y0, y1)(T ), φ(2)′

y1 (y0, y1)(T )
)

is equal to (0, 0, 0, 0, 0, 0), then from (20) we deduce that (ζ0, ζ1) = (0, 0) in U̇p,T (Ω)′×
Fp,T (Ω)′, which also implies in the third equation of (19) that π = 0, completing the
proof.

4. Optimal control formulation and optimality conditions

The purpose of this section is the derivation of necessary optimality conditions for the
original optimal control problem (P): max

(ξ,τ)∈Xp,T (ω)×(0,T )

(
J(ξ, τ) =

∫ T

0
c(u, u̇, ξ) dt+ φ(1)(u, u̇)(τ) + φ(2)(u, u̇)(T )

)
where (u, u̇) satisfies (1).

(P)

Remark 2. In order to guarantee the existence of solutions (u, u̇) to system (1) inde-
pendently of the set of control/parameters (ξ, τ) ∈ Xp,T (ω)× (0, T ) that is considered
in Problem (P), we may need to add norm constraints on the control function ξ. More
precisely, in virtue of Proposition 3.4, we could consider in addition the following
constraint

‖f(ξ) + div(σ(0))‖Fp,T (Ω) + ‖g − σ(0)n‖Gp,T (ΓN ) + ‖(u0, u̇0)‖U(0,1)
p (Ω) ≤ η,

for some η > 0 chosen small enough. We would then proceed like in [11] for deriving the
corresponding optimality conditions, incorporating a Lagrange multiplier for taking
into account such a constraint. In order to not make the complexity heavier, we choose
to omit this point in what follows.

For example, like in the illustrations presented in section 5, one can choose
c(u, u̇, ξ) = −1

2‖ξ‖
2
L2(ω) as cost functional. Due to a lack of smoothness of the state at
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a (possible) optimal time τ , we need to make a change of variable, in order to uncouple
the state variable (u, u̇) and the time parameter τ .

4.1. Transformation of the problem and new formulation

Let ε̃ ∈ (0, 1) be a fix parameter chosen small enough, typically of the range of the time
step when doing numerical simulations in section 5. When considering functionals φ(1)

like (2) for example, we introduce the change of variables µ : [0, 2] → [0, T ] given as
follows (see Figure 3):

µ(s, τ) =


τs if s ∈ [0, 1],
ε

ε̃
(s− 1) + τ if s ∈ [1, 1 + ε̃],

T − (2− s)T − (τ + ε)

1− ε̃
if s ∈ [1 + ε̃, 2].

This change of variable is designed such that µ(·, τ) is bijective from [0, 2] to [0, T ],
and

µ(0, τ) = 0, µ(2, τ) = T, µ(1, τ) = τ, µ(1 + ε̃, τ) = τ + ε.

s

t

0 1 1 + ε̃ 2

τ

τ + ε

T

Figure 3. Graph of the change of variables s 7→ µ(s, τ).

Remark 3. This kind of change of variables corresponds to functionals φ(1) that
involve evaluations of the state variables at times τ and τ +ε. Of course these changes
of variables must be adapted when considering evaluations at other times (but still in
function of τ). When the functional φ(1) involves only evaluations at time τ , then the
one given above is still valid by choosing ε = ε̃ = 0.

The time-derivative µ̇ of µ (with respect to s), as well its the partial derivative µ̇τ
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with respect to τ are given as follows:

µ̇(s, τ) =


τ if s ∈ [0, 1),

ε/ε̃ if s ∈ (1, 1 + ε̃),

T − (τ + ε)

1− ε̃
if s ∈ (1 + ε̃, 2],

µ̇τ (s, τ) =

 1 if s ∈ [0, 1),
0 if s ∈ (1, 1 + ε̃),
−1/(1− ε̃) if s ∈ (1 + ε̃, 2].

Note that µ̇τ is actually independent of τ , and that µ̈ = 0. For a given switching time
τ , we introduce the following change of unknowns and variables

ũ : s 7→ u(·, µ(s, τ)), p̃ : s 7→ p(µ(s, τ)), ξ̃ : s 7→ ξ(·, µ(s)), s ∈ [0, 2]. (21)

We then transform (P) into the following one: max
ξ̃∈Xp,2(ω),τ∈(0,T )

∫ 2

0
µ̇(s, τ)c(ũ, ˙̃u/µ̇, ξ̃) ds+ φ(1)(ũ, ˙̃u/µ̇)(1) + φ(2)(ũ, ˙̃u/µ̇)(2),

subject to (22),

(P̃)

where (22) is the system satisfied by (ũ, p̃), namely

¨̃u− κµ̇∆ ˙̃u− µ̇2 div σ(∇ũ) = µ̇2f(ξ̃) in Ω× (0, 2),

κ

µ̇

∂ ˙̃u

∂n
+ σ(∇ũ)n+ p̃ cof (Φ(ũ))n = g̃ on ΓN × (0, 2),∫

Ω
det(Φ(ũ))dΩ =

∫
Ω

det(Φ(u0))dΩ in (0, 2)

˙̃u = 0 on ΓD × (0, 2),

ũ(·, 0) = u0, ˙̃u(·, 0) = µ̇(0)u̇0 in Ω,

(22)

with g̃(·, s) := g(·µ(s, τ)). The interest of this change of unknowns lies in the fact that
in the new optimal control problem (P̃), the two variables to be optimized, namely the
time parameter τ and the control function ξ̃, are no longer coupled. Let us rewrite (22)
as a first-order system of evolution equations, by introducing

(ỹ0, ỹ1) =
(
ũ, ˙̃u/µ̇

)
, (23)

so that (ỹ0, ỹ1) = (u ◦ µ, u̇ ◦ µ). Then (ỹ0, ỹ1, p̃) satisfies the following system:

˙̃y0 − µ̇ỹ1 = 0 in Ω× (0, 2),
˙̃y1 − κµ̇∆ỹ1 − µ̇div σ(∇ỹ0) = µ̇f(ξ̃) in Ω× (0, 2),

κ
∂ỹ1

∂n
+ σ(∇ỹ0)n+ p̃ cof (Φ(ỹ0))n = g̃ on ΓN × (0, 2),∫

Ω
det(Φ(ỹ0))dΩ =

∫
Ω

det(Φ(u0))dΩ in (0, 2)

ỹ1 = 0 on ΓD × (0, 2),

ỹ0(·, 0) = u0, ˙̃y1(·, 0) = u̇0 in Ω.

(24)
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Remark 4. Note that deriving in time the constraint

∫
Ω

det(Φ(ỹ0))dΩ =∫
Ω

det(Φ(u0))dΩ combined with the first equation of (24) yields

µ̇

∫
Ω

cof(Φ(ỹ0)) : ∇ỹ1dΩ = 0.

Further, in the same way as we obtained (3), we deduce that∫
ΓN

ỹ1 · cof(Φ(ỹ0))n dΓN = 0.

Problem (P̃) is equivalent to the following one, for which we use the same notation: max
ξ̃∈Xp,2(ω),τ∈(0,T )

(
J(ξ̃, τ) =

∫ 2

0

µ̇(s, τ)c(ỹ0, ỹ1, ξ̃) ds+ φ(1)(ỹ0, ỹ1)(1) + φ(2)(ỹ0, ỹ1)(2)

)
,

subject to (24).

(P̃)

4.2. The control-to-state mapping

We first state a result for a general linear system that will be used several times in the
rest.

Proposition 4.1. Let be (ỹ0, ỹ1, p̃) ∈ Up,2(Ω) × U̇p,2(Ω) × Pp,2 and τ ∈ (0, T ). As-

sume that f̃0 ∈ Up,2(Ω), f̃1 ∈ Fp,2(Ω), and g̃ ∈ Gp,2(ΓN ) with the compatibility condi-
tion g̃(·, 0) = 0. Recall that the tensor fields σL and σN have been introduced in (8).
Then, if (ỹ0, p̃) is small enough in Up,2(Ω)× Pp,2, the following system

˙̃z0 − µ̇z̃1 = µ̇f̃0 in Ω× (0, 2),
˙̃z1 − κµ̇∆z̃1 − µ̇div(σL(∇ỹ0).∇z̃0) = µ̇f̃1 in Ω× (0, 2),

κ∂z̃1∂n +
(

(σL + p̃σN )(∇ỹ0).∇z̃0

)
n+ q̃ cof (Φ(ỹ0))n = g̃ on ΓN × (0, 2),

z̃1 = 0 on ΓD × (0, 2),∫
ΓN

z̃0 · cof(Φ(ỹ0))n dΓ = 0 in (0, 2)

z̃0(·, 0) = 0, z̃1(·, 0) = 0 in Ω.

(25)

admits a unique solution (z̃0, z̃1, q̃) ∈ Up,2(Ω)× U̇p,2(Ω)× Pp,2. Moreover, it satisfies

‖(z̃0, z̃1)‖Up,2(Ω)×U̇p,2(Ω) ≤ C(ỹ0, p̃)
(
‖f̃0‖Up,2(Ω) + ‖f̃1‖Fp,2(Ω) + ‖g̃‖Gp,2(ΓN )

)
.

where the constant C(ỹ0, p̃) > 0 depends only on (ỹ0, ỹ1, p̃).

Note here again that solutions (z̃0, z̃1, q̃) of system (25) are continuous on [0, 2] –

with values in U (0,1)
p (Ω)× R.
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Proof. Notice that (z̃0, z̃1, q̃) is solution of system (25) with (ỹ0, ỹ1, p̃) and (f̃0, f̃1, g̃)
as data if and only if (z0, z1, q) is solution of system (17) with (y0, y1, p) and (f0, f1, g)
as data, where we have

y0 = ỹ0(·, µ−1(·, τ)), y1 = ỹ1(·, µ−1(·, τ)), p = p̃(µ−1(·, τ)),

f0 = f̃0(·, µ−1(·, τ)), f1 = f̃1(·, µ−1(·, τ)), g = g̃(·, µ−1(·, τ)).

This is due to the regularity of the change of variables µ(·, τ), in particular the fact that
its derivatives and those of µ−1(·, τ) are in L∞(0, 2;R) and L∞(0, T ;R), respectively.
Then the result follows from Proposition 3.6, and the announced estimate too, which
concludes the proof.

4.2.1. Regularity

In this subsection we study the regularity of the control-to-state mapping, given as

S : Xp,2(ω)× (0, T ) → Up,2(Ω)× U̇p,2(Ω)× Pp,2
(ξ̃, τ) 7→ (ỹ0, ỹ1, p̃),

(26)

where (ỹ0, ỹ1, p̃) is the solution of system (24) corresponding to ξ̃ and µ̇ = µ̇(·, τ). Let
us show that S is locally well-defined. More precisely, we state:

Proposition 4.2. Let be T ∈ (0,∞). There exists η > 0 such that if

‖µ̇f(ξ̃) + div(σ(0))‖Fp,2(Ω) + ‖g̃ − σ(0)n‖Gp,2(ΓN ) + ‖(u0, u̇0)‖U(0,1)
p (Ω) ≤ η

with the compatibility condition κ
∂u̇0

∂n
+ σ(∇u0)n = g̃(·, 0) on ΓN , then system (24)

admits a unique solution (ỹ0, ỹ1, p̃) ∈ Up,2(Ω)× U̇p,2(Ω)× Pp,2.

Proof. From (21) and (23) we have

ỹ0(·, s) = u(·, µ(s, τ)), ỹ1(·, s) = u̇(·, µ(s, τ)), p̃(s) = p(µ(s, τ)),

ξ̃(·, s) = ξ(·, µ(s, τ)),

and then it is clear that (ỹ0, ỹ1, p̃) is solution of (24) with (ξ̃, τ) as control if and only
if (u, u̇, p) is solution of (1) with ξ as control , provided that g̃(·, s) = g(·, µ(s, τ)).
Therefore we conclude by invoking Proposition 3.4.

We are now in position to prove regularity for the control-to-state mapping.

Theorem 4.3. The control-to-state mapping S is locally of class C1 from Xp,2(ω) ×
(0, T ) onto Up,2(Ω)× U̇p,2(Ω)× Pp,2.

Proof. The result is an application of the implicit function theorem. Define on the
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space Up,2(Ω)× U̇p,2(Ω)× Pp,2 ×Xp,2(ω)× (0, T ) the mapping

e : (ỹ0, ỹ1, p̃, ξ̃, τ) 7→



˙̃y0 − µ̇ỹ1

˙̃y1 − µ̇
(
κ∆ỹ1 − div(σ(∇ỹ0))− f(ξ̃)

)
κ
∂ỹ1

∂n
+ σ(∇ỹ0)n+ p cof(Φ(ỹ0))n− g∫

Ω
det(Φ(ỹ0))dΩ−

∫
Ω

det(Φ(u0))dΩ

(ỹ0(·, 0), ỹ1(·, 0))− (u0, u̇0)


,

with values in U̇p,2(Ω)×Fp,2(Ω)×Gp,2(ΓN )×Hp,2 ×U (0,1)
p (Ω), where the dependence

on τ lies in µ̇ = µ̇(·, τ). From Proposition 4.2, the mapping e is locally well-defined, and
the equality e(S(ξ̃, τ), ξ̃, τ) = 0 holds for all (ξ̃, τ) ∈ Xp,2(ω)×(0, T ). Furthermore, from
assumption A1, the mapping e is of class C1. Proposition 4.1 shows that the derivative
of e with respect to (ỹ0, ỹ1, p̃) is invertible. Then the implicit function theorem provides
us the existence of a C1 mapping on Up,2(Ω) × U̇p,2(Ω) × Pp,2 that coincides with S,
which concludes the proof.

We can now describe the partial derivatives of the control-to-state mapping.

4.2.2. Partial derivatives

Let us introduce the linear system satisfied by (ṽ0, ṽ1, q̃) := S′
ξ̃
(ξ̃, τ).ξ̂, denoting the

sensitivity of S with respect to variable ξ̃ in the direction ξ̂, at point (ỹ0, ỹ1, p̃) = S(ξ̃, τ):

˙̃v0 − µ̇ṽ1 = 0 in Ω× (0, 2),
˙̃v1 − κµ̇∆ṽ1 − µ̇div(σL(∇ỹ0).∇ṽ0) = µ̇f ′(ξ̃).ξ̂ in Ω× (0, 2),

κ
∂ṽ1

∂n
+
(

(σL + p̃σN )(∇ỹ0).∇ṽ0

)
n+ q̃ cof(Φ(ỹ0))n = 0 on ΓN × (0, 2),

ṽ1 = 0 on ΓD × (0, 2),∫
ΓN

ṽ0 · cof(Φ(ỹ0))n dΓN = 0 in (0, 2)

ṽ0(·, 0) = 0, ṽ1(·, 0) = 0 in Ω.

(27)

Note that when ξ 7→ f(ξ) is linear (see section A.4), obviously we have f ′(ξ̃).ξ̂ = f(ξ̂)
for all ξ̃ ∈ Xp,2(ω). Let us state that system (27) is well-posed.

Proposition 4.4. Assume that (ξ̃, τ) ∈ Xp,2(ω) × (0, T ), and denote (ỹ0, ỹ1, p̃) =

S(ξ̃, τ) ∈ Up,2(Ω) × U̇p,2(Ω) × Pp,2. Then, if (ỹ0, p̃) is small enough in Up,2(Ω) × Pp,2,

system (27) admits a unique solution (ṽ0, ṽ1, q̃) ∈ Up,2(Ω)× U̇p,2(Ω)× Pp,2 for all ξ̂ ∈
Xp,2(ω). Moreover, there exists a constant C(ỹ0, p̃) depending only on (ỹ0, p̃) such that

‖ṽ0‖Up,2(Ω) + ‖ṽ1‖U̇p,2(Ω) + ‖q̃‖Pp,2
≤ C(ỹ0, p̃)‖f ′(ξ̃).ξ̂‖Fp,2(Ω).

Proof. This is a consequence of Proposition 4.1 with f̃0 = 0, f̃1 = f ′(ξ̂).ξ̃ and g̃ =
0.

We also introduce the linear system satisfied by (w̃0, w̃1, r̃) := S′τ (ξ̃, τ), denoting the
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sensitivity of S with respect to τ at point (ỹ0, ỹ1, p̃) = S(ξ̃, τ):

˙̃w0 − µ̇w̃1 = µ̇τ ỹ1 in Ω× (0, 2),
˙̃w1 − κµ̇∆w̃1 − µ̇div(σL(∇ỹ0).∇w̃0) =

µ̇τ

(
κ∆ỹ1 + div(σ(∇ỹ0)) + f(ξ̃)

)
in Ω× (0, 2),

κ
∂w̃1

∂n
+
(

(σL + p̃σN )(∇ỹ0).∇w̃0

)
n+ r̃ cof (Φ(ỹ0))n = 0 on ΓN × (0, 2),

w̃1 = 0 on ΓD × (0, 2),∫
ΓN

w̃0 · cof(φ(ỹ0))n dΓN = 0 in (0, 2)

w̃0(·, 0) = 0, w̃1(·, 0) = 0 in Ω.

(28)

We show that system (28) is also well-posed.

Proposition 4.5. Assume that (ξ̃, τ) ∈ Xp,2(ω) × (0, T ), and denote (ỹ0, ỹ1, p̃) =

S(ξ̃, τ) ∈ Up,2(Ω) × U̇p,2(Ω) × Pp,2. Then, if (ỹ0, p̃) is small enough in Up,2(Ω) × Pp,2,

system (28) admits a unique solution (w̃0, w̃1, r̃) ∈ Up,2(Ω)×U̇p,2(Ω)×Pp,2. Moreover,
there exists a constant C(ỹ0, p̃) depending only on (ỹ0, p̃) such that

‖w̃0‖Up,2(Ω) + ‖w̃1‖U̇p,2(Ω) + ‖r̃‖Pp,2
≤ C(ỹ0, p̃)

(
1 + ‖f(ξ̃)‖Fp,2(Ω)

)
.

Proof. This is a consequence of Proposition 4.1 with

f̃0 =
µ̇τ
µ̇
ỹ1 ∈ U̇p,2(Ω), f̃1 =

µ̇τ
µ̇

(
κ∆ỹ1 + div(σ(∇ỹ0)) + f(ξ̃)

)
∈ Fp,2(Ω),

and g̃ = 0. Since µ̇ and µ̇τ are in L∞(0, 2;R), the parameter τ does not appear in the
dependence of the constant C(ỹ0, p̃).

4.3. The adjoint system

Recall the notation introduced in system (19): For a function ϕ continuous on (0, 1)∪
(1, 2) we define the jump of ϕ at s = 1 as folows:

[ϕ]1 := lim
s→1+

ϕ(s)− lim
s→1−

ϕ(s).
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Let be (ỹ0, ỹ1, p̃) ∈ Up,2(Ω) × U̇p,2(Ω) × Pp,2. We associate with (ỹ0, ỹ1, p̃) the adjoint

state (ζ̃0, ζ̃1, π̃), assumed to satisfy the following system

− ˙̃
ζ0 − µ̇div(σL(∇ỹ0)∗.∇ζ̃1) = −µ̇c′y0(ỹ0, ỹ1, ξ̃) in Ω× ((0, 1) ∪ (1, 2)),

− ˙̃
ζ1 − µ̇ζ̃0 − κµ̇∆ζ̃1 = −µ̇c′y1(ỹ0, ỹ1, ξ̃) in Ω× ((0, 1) ∪ (1, 2)),(

(σL + p̃σN )(∇ỹ0)∗.∇ζ̃1
)
n+ π̃ cof(Φ(ỹ0))n = 0 on ΓN × ((0, 1) ∪ (1, 2)),

κ
∂ζ̃1
∂n

= 0 on ΓN × ((0, 1) ∪ (1, 2)),

ζ̃1 = 0 on ΓD × ((0, 1) ∪ (1, 2)),〈
ζ̃1 ; cof(Φ(ỹ0))n

〉
W1/(p′),p(ΓN )′,W1/(p′),p(ΓN )

= 0 in ((0, 1) ∪ (1, 2))[
ζ̃0

]
1

= φ
(1)′

y0 (ỹ0, ỹ1)(1) and
[
ζ̃1

]
1

= φ
(1)′

y1 (ỹ0, ỹ1)(1) in Ω,

ζ̃0(·, 2) = −φ(2)′

y0 (ỹ0, ỹ1)(2), ζ̃1(·, 2) = −φ(2)′

y1 (ỹ0, ỹ1)(2) in Ω.

(29)

Note that the derivatives of mapping φ(1) induce jumps for variables ζ̃0 and ζ̃1 at time
s = 1. Similarly to Definition 3.7 that deals with solutions of system (19), we define
solutions of system (29) by transposition as follows:

Definition 4.6. Let be (ỹ0, ỹ1, p̃, ξ̃, τ) ∈ Up,2(Ω)×U̇p,2(Ω)×Pp,2×Xp,2(ω)×(0, T ). We

say that (ζ̃0, ζ̃1, π̃) is a solution of (29) associated with (ỹ0, ỹ1, p̃), if for all (f̃0, f̃1, g̃) ∈
U̇p,2(Ω)×Fp,2(Ω)× Gp,2(ΓN ) we have〈
ζ̃0; µ̇f̃0

〉
U̇p,2(Ω)′,U̇p,2(Ω)

+
〈
ζ̃1; µ̇f̃1

〉
Fp,2(Ω)′,Fp,2(Ω)

+
〈
ζ̃1; µ̇g̃

〉
Gp,2(ΓN )′,Gp,2(ΓN )

= −
∫ 2

0

µ̇
〈
c′y0(ỹ0, ỹ1, ξ̃) ; z̃0

〉
W2,p(Ω)′,W2,p(Ω)

ds−
∫ 2

0

µ̇
〈
c′y1(ỹ0, ỹ1, ξ̃) ; z̃1

〉
W2,p(Ω)′,W2,p(Ω)

ds

−
〈

(φ
(1)′

y0 (ỹ0, ỹ1), φ
(1)′

y1 (ỹ0, ỹ1)) ; (z̃0(·, 1), z̃1(·, 1))
〉
U(0,1)

p (Ω)′,U(0,1)
p (Ω)

−
〈

(φ
(2)′

y0 (ỹ0, ỹ1), φ
(2)′

y1 (ỹ0, ỹ1)) ; (z̃0(·, 2), z̃1(·, 2))
〉
U(0,1)

p (Ω)′,U(0,1)
p (Ω)

,

(30)

where (z̃0, z̃1, q̃) is the solution of system (25) with (ỹ0, ỹ1, p̃) and (f̃0, f̃1, g̃) as data.

It is clear that (ζ̃0, ζ̃1, π̃) is solution of system (29) associated with (ỹ0, ỹ1, p̃) in the
sense of Definition 4.6 if and only if (ζ0, ζ1, π) is solution of system (19) associated
with (y0, y1, p) in the sense of Definition 3.7, provided that

ỹ0(·, s) = y0(·, µ(s, τ)), ỹ1(·, s) = y1(·, µ(s, τ)), p̃(s) = p(µ(s, τ)),

ξ̃(·, s) = ξ(·, µ(s, τ)),

f̃0(·, s) = f0(·, µ(s, τ)), f̃1(·, s) = f1(·, µ(s, τ)), g̃(·, s) = g(·, µ(s, τ)).

The solutions of systems (19) and (29) then satisfy the relations

ζ̃0(·, s) = ζ0(·, µ(s, τ)), ζ̃1(·, s) = ζ1(·, µ(s, τ)), π̃(s) = π(µ(s, τ)).

Therefore we rely on Proposition 3.8 for stating the following result:

Proposition 4.7. Let be (ỹ0, ỹ1, p̃, ξ̃, τ) ∈ Up,2(Ω)× U̇p,2(Ω)×Pp,2 ×Xp,2(ω)× (0, T ).

System (29) admits a unique solution (ζ̃0, ζ̃1, π̃) ∈ U̇p,2(Ω)′ × Fp,2(Ω)′ × Gp,2(ΓN )′, in
the sense of Definition 4.6. Moreover, there exists a constant C(ỹ0, p̃) > 0 depending
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only on (ỹ0, p̃, τ) such that

‖(ζ̃0, ζ̃1)‖U̇p,2(Ω)′×Fp,2(Ω)′ ≤ C(ỹ0, p̃)
(
‖c′y0(ỹ0, ỹ1, ξ̃)‖Up,2(Ω)′ + ‖c′y1(ỹ0, ỹ1, ξ̃)‖U̇p,2(Ω)′

+‖(φ(1)′

y0 (ỹ0, ỹ1), φ
(1)′

y1 (ỹ0, ỹ1)‖U(0,1)
p (Ω)′

+‖(φ(2)′

y0 (ỹ0, ỹ1), φ
(2)′

y1 (ỹ0, ỹ1)‖U(0,1)
p (Ω)′

)
.

In particular, C(ỹ0, p̃) is independent of c, φ(1) and φ(2).

4.4. First-order necessary optimality conditions

Introduce the functional of problem (P̃):

J̃ : Xp,2(ω)× (0, T ) → R

(ξ̃, τ) 7→

∫ 2

0
µ̇(s, τ)c(S(ξ̃, τ)(s), ξ̃(s))ds

+φ1(S(ξ̃, τ))(1) + φ2(S(ξ̃, τ))(2).

(31)

Define the Hamiltonian H for problem (P̃), formally given by

H
(
y0, y1, p, ξ, ζ0, ζ1, π

)
:= c(y0, y1, ξ)− 〈ζ1; f(ξ)〉Lp′ (Ω),Lp(Ω)

−〈ζ1; g〉W1/(p′),p(ΓN )′,W1/(p′),p(ΓN )

−〈ζ0 ; y1〉W2,p(Ω)′,W2,p(Ω)

+ 〈∇ζ1;κ∇y1 + σ(∇y0)〉W1,p(Ω)′,W1,p(Ω)

+π

∫
Ω

det(Φ(y0))dΩ

+p 〈ζ1 ; cof(Φ(y0))n〉W1/(p′),p(ΓN )′,W1/(p′),p(ΓN ) .

(32)

We use the results of sections 4.2 and 4.3 to calculate the first-order derivatives of J̃ .

Proposition 4.8. The functional J̃ is of class C1 and its first-order derivatives write
as follows

J̃ ′
ξ̃
(ξ̃, τ).ξ̂ = µ̇Hξ

(
ỹ0, ỹ1, p̃, ξ̃, ζ̃0, ζ̃1, π̃

)
.ξ̂, (33a)

J̃ ′τ (ξ̃, τ) =

∫ 2

0
µ̇τ (s, τ)H

(
ỹ0, ỹ1, p̃, ξ̃, ζ̃0, ζ̃1, π̃

)
(s)ds, (33b)

for all ξ̂ ∈ Xp,2(ω), where (ỹ0, ỹ1, p̃) satisfies system (24) corresponding to (ξ̃, τ),

and (ζ̃0, ζ̃1, π̃) satisfies system (29) associated with (ỹ0, ỹ1, p̃) and (ξ̃, τ).

Proof. Denote (ỹ0, ỹ1) = S(ξ̃, τ). For the sake of concision we will denote ϕ(s) when
dealing with ϕ(·, s), for any s ∈ [0, 2]. Differentiating functional J̃ with respect to the

26



variable ξ̃ gives

J ′
ξ̃
(ξ̃, τ).ξ̂ =

∫ 2

0
µ̇(s, τ)c′ξ

(
ỹ0(s), ỹ1(s), ξ̃(s)

)
.ξ̂(s) ds

+

∫ 2

0
µ̇(s, τ)c′y0

(
ỹ0(s), ỹ1(s), ξ̃(s)

)
.ṽ0(s) ds

+

∫ 2

0
µ̇(s, τ)c′y1

(
ỹ0(s), ˙̃y1(s), ξ̃(s)

)
.ṽ1(s) ds

+
〈(
φ̃

(1)′

y0 (ỹ0, ỹ1)(1), φ̃
(1)′

y1 (ỹ0, ỹ1)(1)
)

; (ṽ0(1), ṽ1(1))
〉
U(0,1)

p (Ω)′,U(0,1)
p (Ω)

+
〈(
φ̃

(2)′

y0 (ỹ0, ỹ1)(2), φ̃
(2)′

y1 (ỹ0, ỹ1)(2)
)

; (ṽ0(2), ṽ1(2))
〉
U(0,1)

p (Ω)′,U(0,1)
p (Ω)

,

where (ṽ0, ṽ1) := Sξ̃(ξ̃, τ).ξ̂ satisfies system (27). Taking the duality product in Lp
′
(Ω)×

Lp(Ω) of the second equation of (27) by ζ̃1, integrating by parts on (0, 1)∪ (1, 2), and
using the Green formula two times, leads us to

J ′
ξ̃
(ξ̃, τ).ξ̂ =

∫ 2

0
µ̇(s, τ)c′ξ

(
ỹ0(s), ỹ1(s), ξ̃(s)

)
.ξ̂(s) ds

−
∫ 2

0
〈ζ̃1(s) ; µ̇(s, τ)f ′(ξ̃(s)).ξ̂〉Lp′ (Ω),Lp(Ω)ds.

Noticing that

Hξ
(
ỹ0, ỹ1, p̃, ξ̃, ζ̃0, ζ̃1, π̃

)
.ξ̂ = c′ξ(ỹ0, ỹ1, ξ̃).ξ̂ − 〈ζ̃1; f ′(ξ̃).ξ̂〉Lp′ (Ω),Lp(Ω)

=
〈
c′ξ(ỹ0, ỹ1, ξ̃)− f ′(ξ̃)∗.ζ̃1; ξ̂

〉
Xp,2(ω)′,Xp,2(ω)

,

identity (33a) follows. Differentiating J̃ with respect to τ gives

J ′τ (ξ̃, τ) =

∫ 2

0
µ̇τ (s, τ)c

(
ỹ0(s), ỹ1(s), ξ̃(s)(s)

)
ds

+

∫ 2

0
µ̇(s, τ)c′y0

(
ỹ0(s), ỹ1(s), ξ̃(s)

)
.w̃0(s) ds

+

∫ 2

0
µ̇τ (s, τ) + c′y1

(
ỹ0(s), ỹ1(s), ξ̃(s)

)
.w̃1(s) ds

+
〈(
φ̃

(1)′

y0 (ỹ0, ỹ1)(1), φ̃
(1)′

y1 (ỹ0, ỹ1)(1)
)

; (w̃0(1), w̃1(1))
〉
U(0,1)

p (Ω)′,U(0,1)
p (Ω)

+
〈(
φ̃

(2)′

y0 (ỹ0, ỹ1)(2), φ̃
(2)′

y1 (ỹ0, ỹ1)(2)
)

; (w̃0(2), w̃1(2))
〉
U(0,1)

p (Ω)′,U(0,1)
p (Ω)

,

where (w̃0, w̃1) := Sτ (ξ̃, τ) satisfies system (28). Taking the inner product of the second

equation of (28) by ζ̃1, integrating by parts and using the Green formula, two times,
leads us to

J ′τ (ξ̃, τ) =

∫ 2

0

µ̇τ (s, τ)c(ỹ0(s), ỹ1(s), ξ̃(s))ds−
∫ 2

0

〈ζ̃0(s); µ̇τ (s, τ)ỹ1(s)〉W2,p(Ω)′,W2,p(Ω)ds

−
∫ 2

0

〈
ζ̃1(s); µ̇τ (s, τ)

(
κ∆ỹ1(s) + div(σ(∇ỹ0(s))) + f(ξ̃(s))

)〉
Lp′ (Ω),Lp(Ω)

ds,

27



where in particular we have used the identity

∫
ΓN

ỹ1 · cof(Φ(ỹ0))n dΓN = 0 (see Re-

mark 4). We have also used
〈
ζ̃1 ; cof(Φ(ỹ0))n

〉
W1/(p′),p(ΓN )′,W1/(p′),p(ΓN )

= 0, imposed

by the constraint of system (29). Further, by using the Green’s formula we obtain

µ̇τ c(ỹ0, ỹ1, ξ̃)− 〈ζ̃0; µ̇τ ỹ1〉W2,p(Ω)′,W2,p(Ω)

−
〈
ζ̃1; µ̇τ

(
κ∆ỹ1 + div(σ(∇ỹ0)) + f(ξ̃)

)〉
Lp′ (Ω),Lp(Ω)

= µ̇τ

(
c(ỹ0, ỹ1, ξ̃)− 〈ζ̃0; ỹ1〉W2,p(Ω)′,W2,p(Ω) − 〈ζ̃1; f(ξ̃)〉Lp′ (Ω),Lp(Ω)

+
〈
∇ζ̃1;κ∇ỹ1 + σ(∇ỹ0)

〉
W1,p(Ω)′,W1,p(Ω)

−
〈
ζ̃1;

∂ỹ1

∂n
+ σ(∇ỹ0)

〉
W1/(p′),p(ΓN )′,W1/(p′),p(ΓN )

)
= µ̇τH(ỹ0, ỹ1, p̃, ξ̃, ζ̃0, ζ̃1, π̃).

Thus we obtain (33b), which completes the proof.

Remark 5. Since the chosen control operator appears in (32) in the specific form
ξ̃ 7→ f(ξ̃), the derivative (33a) reduces to

J̃ ′
ξ̃
(ξ̃, τ) = −µ̇f ′(ξ̃)∗.ζ̃1.

We keep the general form (33a) because this formula applies in a more case (see [10]).

Then the first main result follows, namely the first-order optimality conditions for
problem (P̃):

Theorem 4.9. Let be (ξ̃, τ) ∈ Xp,2(ω) × (0, T ) an optimal solution of problem (P̃).
Then we have

c′ξ(ỹ0, ỹ1, ξ̃)− f ′(ξ̃)∗.ζ̃1 = 0, (34a)∫ 2

0
µ̇τ (s, τ)H

(
ỹ0, ỹ1, p̃, ξ̃, ζ̃0, ζ̃1, π̃

)
(s) ds = 0, (34b)

where (ỹ0, ỹ1, p̃) = S(ξ̃, τ) is the solution of (24) and (ζ̃0, ζ̃1, π̃) is the solution of (29)
associated with (ỹ0, ỹ1, p̃).

Proof. Problem (P̃) consists in minimizing the functional J̃ defined in (31). From
Theorem 4.3, the functional J̃ is C1. Its derivatives with respect to ξ̃ and τ
are given in Proposition 4.8. As mentioned in the prrof of the latter, we have
Hξ
(
ỹ0, ỹ1, p̃, ξ̃, ζ̃0, ζ̃1, π̃

)
.ξ̂ = c′ξ(ỹ0, ỹ1, ξ̃).ξ̂ − f ′(ξ̂).ξ̂. We conclude by utilizing the

Karush-Kuhn-Tucker conditions.

4.5. Other formulation of the optimality conditions

The optimality conditions stated in Theorem 4.9 deal with transformed systems whose
time variables is s ∈ (0, 2). For practical purposes, like implementation, it might be
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more convenient to rewrite them in terms of variables satisfying systems whose time
variable stands for t ∈ (0, T ).

We state the second main result of the paper, as a corollary to Theorem 4.9.

Corollary 4.10. Let be (ξ̃, τ) ∈ Xp,2(ω)× (0, T ) an optimal solution of problem (P̃).
Then we have

c′ξ(u, u̇, ξ)− f ′(ξ) = 0, (35a)∫ T

0

(
µ̇τ ◦ µ−1(t, τ)

)
H
(
u, u̇, p, ξ, ζ0, ζ1, π)(t) dt = 0, (35b)

where (u, u̇, p, ξ) = (S(ξ̃, τ), ξ̃) ◦ µ−1(·, τ) satisfies (1), and (ζ0, ζ1, π) is solution of
system (19) associated with (y0, y1, p) = (u, u̇, p) in the sense of Definition 3.7.

Proof. Recall from section 4.1 that we have

ỹ0(·, s) = u(·, µ(s, τ)), ỹ1(·, s) = u̇(·, µ(s, τ)), p̃(s) = p(µ(s, τ)),

ξ̃(·, s) = ξ(·, µ(s, τ)), s ∈ [0, 2],
(36)

so that (u, u̇, p) satisfies (1) if and only if (ỹ0, ỹ1, p̃) satisfies (24). Now introduce

ζ0(·, t) = ζ̃0(·, µ−1(t, τ)), ζ1(·, t) = ζ̃1(·, µ−1(t, τ)), π(t) = π̃(µ−1(t, τ)), t ∈ (0, T ),

where the notation µ−1(t, τ) refers to the inverse of s 7→ µ(s, τ). Composing sys-
tem (29) (satisfied by (ζ̃0, ζ̃1, π̃)) by µ−1(t, τ) yields system (19) (satisfied by (ζ0, ζ1, π))
corresponding to (y0, y1, p) = (u, u̇, p). Then we compose (34a) by µ−1(·, τ) in order to
obtain (35a), and use the change of variable formula in the integral of (34b) in order
to obtain (35b), which concludes the proof.

Remark 6. The term µ̇τ ◦ µ−1(t, τ) which appears in (35b) is an Eulerian represen-
tation of the sensitivity of µ̇ with respect to τ . Further, choosing µ as in section 4.1,
this term is actually piecewise constant:

µ̇τ (µ−1(t, τ), τ) =

 1 if t ∈ [0, τ),
0 if t ∈ (τ, τ + ε),
−1/(1− ε̃) if t ∈ (τ + ε, T ].

Remark 7. The functional J(ξ̃, τ) of Problem (P̃), which deals with variables
(ỹ0, ỹ1, ξ̃), is also expressed in terms of the original variables as follows

J(ξ, τ) =

∫ T

0
c(u, u̇, ξ) dt+ φ(1)(u, u̇)(τ) + φ(2)(u, u̇)(T ), (37)

using the change of variables (36).

5. Numerical illustrations

We propose to illustrate the optimality conditions obtained in Corollary 4.10 by re-
alizing numerical simulations which rely on finite element formulations for the space
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discretization. While a strong functional framework has been considered for the theo-
retical study of Problem (P̃), the variational formulation corresponding to the finite
element discretization only requires weaker regularity.

5.1. Variational formulations

Solving numerically the optimality conditions for Problem (P̃) – for example those
provided by Corollary 4.10 – requires solving the state system (1) and the adjoint
system (19). Let us write their respective variational formulations, whose space
discretizations lead to their respective finite element formulations.

Weak formulation of the state system.
The variational formulation of the state system (1) is given, for all test function ϕ ∈
W1,p′(Ω) such that ϕ|ΓD

= 0, and for all multiplier q ∈ R, as follows

〈ü;ϕ〉Lp(Ω),Lp′ (Ω) + κ〈∇u̇;∇ϕ〉Lp(Ω),Lp′ (Ω) +

〈
∂W
∂E

(E(u)); (E′(u).ϕ)

〉
Lp(Ω),Lp′ (Ω)

= 〈f ;ϕ〉Lp(Ω),Lp′ (Ω) + 〈g;ϕ〉Lp(ΓN ),Lp′ (ΓN ), (38a)

q

∫
Ω

det(Φ(u))dΩ = q

∫
Ω

det(Φ(u0))dΩ, (38b)

almost everywhere in (0, T ). We obtained the bilinear form associated with the strain

energy by using the symmetry of tensor
∂W
∂E

, provided by Assumption A2 (we refer

to Remark 8 for more details). Note that the Neumann condition (1b) is implicitly
contained in (38a): By using the Green formula on (38a), we deduce both (1a) and (1b).

Weak formulation of the adjoint system.
Using the Hamiltonian functional introduced in (32), we notice that the weak formu-
lation of the adjoint system (19) writes −ζ̇0 +Hy0(y0, y1, p, ξ, ζ0, ζ1, π) = 0 in Ω× ((0, τ) ∪ (τ, T )),

−ζ̇1 +Hy1(y0, y1, p, ξ, ζ0, ζ1, π) = 0 in Ω× ((0, τ) ∪ (τ, T )),
Hp(y0, y1, p, ξ, ζ0, ζ1, π) = 0 in ((0, τ) ∪ (τ, T )),

where, using the Green formula, and denoting X = (y0, y1, p, ξ, ζ0, ζ1, π), we have

Hy0(X).ϕ0 = c′y0(y0, y1, ξ).ϕ0 + 〈∇ζ1;σL(∇y0).∇ϕ0〉W1,p(Ω)′,W1,p(Ω)

+ 〈ϕ0;π cof(Φ(y0))n〉L2(ΓN ) + 〈p ζ1 ; (σN (∇y0).∇ϕ0)n〉L2(ΓN )

= c′y0(y0, y1, ξ).ϕ0 − 〈div(σL(∇y0)∗.∇ζ1);ϕ0〉Lp′ (Ω),Lp(Ω)

+ 〈ϕ0; ((σL + pσN )(∇y0)∗.∇ζ1)n+ π cof(Φ(y0))n〉L2(ΓN ) ,

Hy1(X).ϕ1 = c′y1(y0, y1, ξ).ϕ1 − 〈ζ0 ;ϕ1〉W2,p(Ω)′,W2,p(Ω) + κ 〈∇ζ1;∇ϕ1〉W1,p(Ω)′,W1,p(Ω)

= c′y1(y0, y1, ξ).ϕ1 − 〈ζ0 + κ∆ζ1 ;ϕ1〉W2,p(Ω)′,W2,p(Ω)

+

〈
κ
∂ζ1
∂n

;ϕ1

〉
W2−1/p,p(ΓN )′,W2−1/p,p(ΓN )

,

Hp(X) = 〈ζ1 ; cof(Φ(y0))n〉W1/(p′),p(ΓN )′,W1/(p′),p(ΓN ) .

Actually it has been shown in [9] that the variational formulation for the adjoint
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system (19) can be derived as from the Hamiltonian functional as above. Note that
the adjoint system is solved backward in time. It remains to comment on the initial
values of system (19).

Expressions of the initial value conditions for the adjoint system.
As mentioned in the introduction, we aim to maximize the variations of the pressure,
namely

φ(1)(u, u̇)(τ) = (p(τ + ε)− p(τ))/ε,

where p is a function of (u, u̇), as from (1b) we obtain

p = − 1

|ΓN |

∫
ΓN

(det(Φ(u)))−1Φ(u)T
(
κ
∂u̇

∂n
+ σ(∇u)n

)
dΓN .

The sensitivity of p with respect to u and u̇ is given in the variational sense by

∂p

∂u
.v = − 1

|ΓN |

∫
ΓN

(det(Φ(u)))−1
(
∇vT − (Φ(u)−T : ∇v)Φ(u)T

)(
κ
∂u̇

∂n
+ σ(∇u)n

)
dΓN

− 1

|ΓN |

∫
ΓN

(det(Φ(u)))−1Φ(u)T (σL(∇u).∇v)ndΓN ,

∂p

∂u̇
.v̇ = − κ

|ΓN |

∫
ΓN

(det(Φ(u)))−1Φ(u)T
∂v̇

∂n
dΓN ,

and consequently the first-order derivatives of functional φ(1) are expressed as

φ(1)′

u (u, u̇) =
1

ε

(
∂p

∂u
(τ + ε)− ∂p

∂u
(τ)

)
, φ

(1)′

u̇ (u, u̇) =
1

ε

(
∂p

∂u̇
(τ + ε)− ∂p

∂u̇
(τ)

)
.

These expressions are needed when implementing the numerical solution of the
adjoint system (19).

Implementation of the jump conditions for the adjoint state.
In practice we consider a subdivision of the time interval (0, 2) when addressing the op-
timality conditions given in Theorem 4.9, or of the time interval (0, T ) when addressing
those given in Corollary 4.10. The adjoint system (29) deals with jump conditions at
fixed time s = 1, and therefore if the time subdivision of the interval (0, 2) meets s = 1,
then implementing the jump conditions at s = 1 does not present any difficulties. On
the other hand, the adjoint system (19) involves jumps at free time t = τ , which in
general does not coincide with a point of the time subdivision. Therefore we need to
approximate the values of the right-and-sides of these jump conditions at time τ . For
example, if τ ∈ [ti, ti+1], where the {ti}i∈I define the time subdivision, one can use the
following linear approximation:

φ(1)(y0, y1)(τ) ≈ ti+1 − τ
ti+1 − ti

φ(1)(y0, y1)(ti) +
τ − ti
ti+1 − ti

φ(1)(y0, y1)(ti+1).

Such an approximation introduces an error of order 1 in the time scheme. In the
numerical realizations presented in section 5.3, we chose to deal with the transformed
systems (22) and (29), and thus with Problem P̃.
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5.2. Algorithm

We adopt the so-called optimize-discretize approach, meaning that we discretize the
optimality conditions initially obtained in Corollary 4.10 for the continuous problem.
The other approach would consist in first discretizing Problem (P), and next deriving
optimality conditions for the corresponding discretized problem (which would be the
focus of another approach). Note that the optimality conditions so derived would be
specific to the discretization chosen for the state system and the objective functional.

The optimality conditions obtained in Corollary 4.10 provide a gradient to vanish,
namely

G(ξ, τ) :=

 c′ξ(u, u̇, ξ)− f ′(ξ)∫ T

0

(
µ̇τ ◦ µ−1(t, τ)

)
H
(
u, u̇, p, ξ, ζ0, ζ1, π)(t) dt

 , (39)

where (u, u̇, p) = (y0, y1, p) satisfies (1) and (ζ0, ζ1, π) satisfies (19). We solve Prob-
lem (P) with a gradient rule, more specifically the Barzilai-Borwein algorithm [2]. The
corresponding method is given in Algorithm 1 below.

Algorithm 1 Solving Problem (P) via the first-order necessary optimality conditions
of Corollary 4.10.

Initialization:
- Initialize (ξ0, τ0) = (0, T/2).

Initial gradient: From (ξ0, τ0), compute the (initial) gradient as follows:

- Compute the state (u, u̇, p) corresponding to ξ0, by solving (1).
- Compute the adjoint state (ζ0, ζ1, π) corresponding to (ξ0, τ0),

by solving (19).
- Compute the gradient G0 := G(ξ0, τ0), using the expression (39).


Compute
the gradient
in 3 steps

Store (ξ0, τ0) and G0.
Armijo rule: Choose α = 0.5.

- Find the smallest n ∈ N such that J((ξ0, τ0)−αnG0) < J(ξ0, τ0), using expression (37).
- Define (ξ1, τ1) = (ξ0, τ0)− αnG0.
- Compute the gradient G1 as above, corresponding to (ξ1, τ1).
- Store (ξ1, τ1) and G1.

Barzilai-Borwein gradient steps: Initialization with ((ξ0, τ0),G0) and ((ξ1, τ1),G1).

Compute iteratively (ξn, τn) (n ≥ 2) with the Barzilai-Borwein steps.
While ||G(ξn, τn)||L2(ω)×R > 1.e−10, do gradient steps.

End: Obtain (ξ, τ), approximated solution of (P̃) with.

5.3. Implementation and results

Consider a 1D toy-model for which Ω = (0, 1), ΓD = {0} and ΓN = {1}. While the
theoretical analysis provided in this article may a priori not apply to the 1D case,
the goal of this subsection is to provide an illustration of the implementation of a
solution for Problem (P). For the strain energy, we propose to consider the example
Saint Venant-Kirchhoff model (see section A.2), namely

W(E) = µLtr(E2) +
λL
2

tr(E)2,
∂W
∂E

(E) = 2µLE + λLtr(E)I, (40)
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where µL and λL are given Lamé coefficients. We refer to section A.2 for further details
on this model. As mentioned previously the space discretization is realized with finite
elements, more specifically P1-elements. The control is distributed on the subdomain
ω = [0.75, 1.00]. The cost function and the objective functions are chosen to be

c(u, u̇, ξ) = −α
2
‖ξ‖2L2(ω), φ(1)(u, u̇) = p, φ(2)(u, u̇) = 0.

with α > 0. Regarding the choice of the functional φ(1), unlike (2) where we aim at
maximizing the variations of the pressure at some time τ ∈ (0, T ), we rather aim at
maximizing the pressure itself directly, because initially the pressure is equal to zero, in
view of the choice we made for the initial conditions in Table 1. The time discretization
for the state system (1) corresponds to the Crank-Nicolson method (that is the θ-
method with θ = 0.5), while the time discretization for the adjoint system (19) is an
implicit Euler scheme. At each time step, the nonlinearity due to the strain energy
terms are treated with the Newton method. The choices for the different parameters
are summarized in Table 1.

α κ λL µL g u0 u̇0 T time step mesh size
2.10−3 2.10−4 0.05 0.05 0 0 0 15.0 0.02 0.01

Table 1. Values of parameters for numerical realization

The implementation has been realized in C++, using the Getfem++ Library [17].
Using Algorithm 1, we obtain that the optimal time parameter is approximately τ ≈
7.9. We provide screenshots representing the time evolution of the different variables
in Figures 4, 5 and 6. The time evolution of the pressure is represented in Figure 7.
Note that in view of the parameters given in Table 1, with no control we would obtain
the trivial states u = 0 and u̇ = 0 on (0, T ).
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t = 0.02 t = 1.00 t = 1.5 t = 2.0

t = 2.5 t = 3.0 t = 3.5 t = 4.0

t = 4.5 t = 5.0 t = 5.5 t = 6.0

t = 6.5 t = 7.0 t = 7.46 t = 7.48

Figure 4. Values of the control function, for different values of the time.

In Figure 4 we observe that the control function, distributed on the seg-
ment [0.75, 1.00], is sparse in time, in the sense that it becomes inactivated from t =
7.48, a short time before the optimal time parameter t = τ ≈ 7.9. The fact that it is
sparse in time is clearly explained by the fact that the terminal objective functional φ(2)

is chosen to be equal to zero. The fact that the control function gets inactive a short
time before τ could be explained by the propagation effect that makes the control
useless during a (short) time interval before τ . Note also that the sign of the control
function changes rapidly, that we could explain by the necessity of to creating a wave
phenomenon (see Figure 6).
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t = 0.02 t = 1.00 t = 2.5 t = 3.0

t = 4.0 t = 5.0 t = 6.0 t = 6.3

t = 7.0 t = 8.0 t = 9.0 t = 10.0

t = 12.0 t = 13.0 t = 14.0 t = 15.0

Figure 5. Values of the displacement variable u, for different values of the time.

In Figure 5, where the time evolution of the displacement field is represented, we
observe that the state u tends to become steady, and then define a deformed do-
main (Id + u)(Ω) of steady shape.
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t = 0.02 t = 1.00 t = 2.5 t = 3.0

t = 4.0 t = 5.0 t = 6.0 t = 6.3

t = 7.0 t = 8.0 t = 9.0 t = 10.0

t = 12.0 t = 13.0 t = 14.0 t = 15.0

Figure 6. Values of the displacement velocity variable u̇, for different values of the time.

The influence of the control is more visible on the time evolution of the velocity
field u̇ represented in Figure 6: At the beginning the state u̇ becomes non-positive,
before changing its sign in order to create the profile of an oscillation. Next, after t = τ ,
it adopts a profile that is translated to the left.

Figure 7. Values of the pressure variable.
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In Figure 7 we observe that under the action of the control, the pressure presents
small oscillations, until approximately t = 5 when it starts increasing steeply, for
reaching it first maximum around t ≈ 6.3. Next the pressure decreases, before bouncing
again around time t = 5, increasing next even more steeply for reaching another
maximum around t = τ ≈ 7.9. Next, the pressure oscillates while decreasing, and
seems to reach a pseudo-steady state from t = 13.5. The final value of the pressure is
still larger than its initial value (that is 0).

6. Conclusion

In this article we proposed a mathematical framework for the modeling of the mechani-
cal aspects of defibrillation, based on the application of a distributed control on a part
of the heart tissue. In particular, we developed an approach based on the optimal
control theory, in order to enable us to maximize a class of functionals at a free time
parameter, also optimized as well as the distributed control. We were able to derive
rigorously first-order optimality conditions, that are possible to exploit for numerical
realizations. We believe that our approach can pave the way to the development of
robust and realistic numerical realizations. Further, based on the mathematical anal-
ysis we provide for the elastodynamics system with global injectivity condition, other
physics-related aspects of the defibrillation problem could also be coupled to it, and
addressed in the same fashion, like the electrical activity of the heart tissue for exam-
ple. Let us finally mention that the complexity and the inherent technicalities seem a
priori to be unavailable, as we aim at modeling phenomena with hyperelastic behavior.

Link to the code for numerical implementation

The C++ code with which the numerical experiments were performed in section 5.3
is available here:
https://github.com/SebastienCourt/Defibrillation
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Appendix A. Appendix

A.1. Proofs of intermediate results

This subsection is dedicated to the technical proofs of results related to the wellposed-
ness of linear systems, namely Proposition 3.2 and Corollary 3.3. The methodology is
similar to [12], but differs by its approach, as it actually deals with different systems.

38

http://dx.doi.org/10.1002/cnm.2742
https://doi.org/10.1016/0300-9572(88)90044-5
https://doi.org/10.1007/s00209-005-0815-8
https://doi.org/10.1007/BF00250807
https://doi.org/10.1002/zamm.201600199
https://doi.org/10.3934/dcdss.2018060
https://doi.org/10.4171/IFB/424
https://doi.org/10.1007/s00030-023-00889-1
https://doi.org/10.1090/memo/0788
https://doi.org/10.1007/s00209-007-0120-9
http://dx.doi.org/10.1007/978-1-4757-4355-5
https://eudml.org/doc/249061
https://doi.org/10.1145/3412849


A.1.1. Proof of Proposition 3.2

Introduce first the following Hilbert spaces

V(Ω) =

{
v ∈ H1(Ω) | v|ΓD

= 0,

∫
ΓN

v · n dΓN = 0

}
,

V(ΓN ) =

{
v ∈ H1/2(ΓN ) |

∫
ΓN

v · n dΓN = 0

}
.

Remark that these spaces are included in those introduced in Definition 2.1, namely
V0(Ω) and V0(ΓN ), respectively. We characterize the dual of V(ΓN ):

Lemma A.1. A function χ ∈ V(ΓN )′ if and only if there exists p ∈ R such that
χ = pn.

Proof. Set p =
1

|ΓN |

∫
ΓN

χ ·n dΓN . It is easy to verify that χ−pn = 0 in H−1/2(ΓN ),

which ends the proof.

Define the following operators

〈Av;ϕ〉V(Ω)′,V(Ω) = κ

∫
Ω
∇v : ∇ϕdΩ, 〈Bw;ψ〉V(Ω)′,V(Ω) =

∫
Ω

(σL(0).∇w) : ∇ψ dΩ.

Denoting y0 = u, y1 = u̇ and y := (y0, y1)T , the variational formulation of system (12)
is given for all ϕ = (ϕ0, ϕ1) ∈ L2(Ω)× V(Ω) as follows:

〈ẏ, ϕ〉L2(Ω)×V(Ω)′,L2(Ω)×V(Ω) = 〈ẏ0, ϕ0〉L2(Ω) + 〈ẏ1, ϕ1〉V(Ω)′,V(Ω)

= 〈y1, ϕ0〉L2(Ω) − κ〈∇y1,∇ϕ1〉L2(Ω) − 〈σL(0).∇y0,∇ϕ1〉L2(Ω)

+〈f, ϕ1〉V(Ω)′,V(Ω) + 〈g, ϕ1〉V(ΓN )′,V(ΓN ),

〈ẏ, ϕ〉L2(Ω)×V(Ω)′,L2(Ω)×V(Ω) = 〈y1, ϕ0〉L2(Ω) − 〈Ay1, ϕ1〉V(Ω)′,V(Ω) − 〈By0, ϕ1〉V(Ω)′,V(Ω)

+〈f, ϕ1〉V(Ω)′,V(Ω) + 〈g, ϕ1〉V(ΓN )′,V(ΓN ). (A1)

Using Assumption A3, we deduce that there exists y1 = u̇ ∈ L2(0, T ;V(Ω)) ∩
H1(0, T ;V(Ω)′) such that (A1) holds for all ϕ ∈ V(Ω), almost everywhere in (0, T ).
After integration by parts, we obtain

ü− κ∆u̇− div(σL(0).∇u)− f = 0 in V(Ω)′,

κ
∂u̇

∂n
+ (σL(0).∇u)n− g = 0 in V(ΓN )′.

From the second equation we deduce by Lemma A.1 the existence of p(t) ∈ R such
that

κ
∂u̇

∂n
+ (σL(0).∇u)n+ pn− g = 0 in H−1/2(ΓN ).

Note that deriving in time the third and fourth equations of system (12)
yields 〈u̇, n〉H−1/2(ΓN ),H1/2(ΓN ) = 0 and u̇ = 0 on ΓD for almost every t ∈ [0, T ]. Tak-
ing the scalar product of the first equation of system (12) by u̇ and using the Green
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formula, we obtain

d

dt

(
1

2
‖u̇‖2L2(Ω) + σL(0).∇u : ∇u

)
+κ‖∇u̇‖2L2(Ω) = 〈f, u̇〉L2(Ω)+〈g, u̇〉H1/2(ΓN ),H−1/2(ΓN ).

Integrating in time this equality and using Assumption A2, we deduce via the Young’s
inequality

∇u ∈ L∞(0, T ;L2(Ω)), u̇ ∈ L∞(0, T ; L2(Ω)), ∇u̇ ∈ L2(0, T ;L2(Ω)).

Next, proceeding as previously with ü in the role of u̇, we obtain similarly

‖ü‖2L2(0,T ;L2(Ω)) +
κ

2
‖∇u̇(T )‖2L2(Ω) +

∫ T

0
〈σL(0).∇u,∇ü〉V(Ω),V(Ω)′dt

=
κ

2
‖u̇0‖2L2(Ω) + 〈f, ü〉L2(Ω) + 〈g, ü〉H1/2(ΓN ),H−1/2(ΓN ).

Further, by integration by parts on (0, T ), we deduce

‖ü‖2L2(0,T ;L2(Ω)) + κ
2

d
dt‖∇u̇‖

2
L2(Ω) =

∫ T

0
〈σL(0).∇u̇,∇u̇〉L2(Ω)dt

+〈f, ü〉L2(Ω) + 〈g, ü〉H1/2(ΓN ),H−1/2(ΓN ).

which shows that

ü ∈ L2(0, T ; L2(Ω)), ∇u̇ ∈ L∞(0, T ;L2(Ω)).

Further, from the first equation of (12) we have −κ∆u̇ = −ü + div(σL(0).∇u) + f ∈
L2(0, T ; L2(Ω)), which yields u̇ ∈ L2(0, T ; H2(Ω)) and therefore

u̇ ∈ L2(0, T ; H2(Ω)) ∩H1(0, T ; L2(Ω)).

Thus system (12) owns the Lp-maximal regularity property for p = 2, and so for
any p > 3, namely u̇ ∈ Lp(0, T ; H2(Ω)) ∩W1,p(0, T ; L2(Ω)) and

‖u̇‖Lp(0,T ;H2(Ω))∩W1,p(0,T ;L2(Ω)) ≤
C
(
‖f‖Lp(0,T ;L2(Ω)) + ‖g‖Lp(0,T ;H1/2(ΓN ))∩W1/(2p′),p(0,T ;L2(ΓN )) + ‖(u0, u̇0)‖H2(Ω)×H2/(p′)(Ω)

)
.

Further, estimate (6) yields also∥∥∥∥∂u̇∂n
∥∥∥∥

W1/(2p′),p(0,T ;H1/2−1/p(ΓN )′)

≤

C
(
‖f‖Lp(0,T ;L2(Ω)) + ‖g‖Lp(0,T ;H1/2(ΓN ))∩W1/(2p′),p(0,T ;L2(ΓN )) + ‖(u0, u̇0)‖H2(Ω)×H2/(p′)(Ω)

)
.

(A2)
Since the coefficients of σL(0) are in L∞(Ω), we also have

‖(σL(0).∇u)n‖W1/(2p′),p(0,T ;H1/2−1/p(ΓN )′) ≤
C
(
‖f‖Lp(0,T ;L2(Ω)) + ‖g‖Lp(0,T ;H1/2(ΓN ))∩W1/(2p′),p(0,T ;L2(ΓN )) + ‖(u0, u̇0)‖H2(Ω)×H2/(p′)(Ω)

)
.

(A3)
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Next, using the second equation of system (12), we obtain the following expression for
the pressure

p =
1

|ΓN |

(∫
ΓN

g · n dΓN − κ
〈
∂u̇

∂n
+ (σL(0).∇u)n;n

〉
H1/2−1/p(ΓN )′,H1/2−1/p(ΓN )

)
.

Since the normal vector of ΓN satisfies

n ∈W2−1/p,p(ΓN ) ↪→ H2−1/p(ΓN ) ↪→ H1/2−1/p(ΓN ),

we deduce that the pressure satisfies p ∈W1/(2p′),p(0, T ;R), and

‖p‖W1/(2p′),p(0,T ;R) ≤ C
(
‖g‖W1/(2p′),p(0,T ;L2(ΓN ))

+

∥∥∥∥∂u̇∂n + (σL(0).∇u)n

∥∥∥∥
W1/(2p′),p(0,T ;H1/2−1/p(ΓN )′)

)
.

Combined with estimates (A2)-(A3), this yields

‖p‖Pp,T
≤ C

(
‖f‖Lp(0,T ;L2(Ω)) + ‖g‖Lp(0,T ;H1/2(ΓN ))∩W1/(2p′),p(0,T ;L2(ΓN ))

+‖(u0, u̇0)‖H2(Ω)×H2/(p′)(Ω)

)
.

(A4)

Therefore from the second equation of system (12) we have κ
∂u̇

∂n
+ (σL(0).∇u)n =

g − pn ∈ Gp,T (ΓN ), and then we deduce the regularity of (u, u̇) in Up,T (Ω)× U̇p,T (Ω)
from Proposition 3.2. Further, estimate (13) yields

‖u‖Up,T (Ω) + ‖p‖Pp,T

≤ C
(
‖(u0, u̇0)‖U(0,1)

p (Ω) + ‖f‖Fp,T (Ω) + ‖g‖Gp,T (ΓN ) + ‖pn‖Gp,T (ΓN )

)
≤ C

(
‖(u0, u̇0)‖U(0,1)

p (Ω) + ‖f‖Fp,T (Ω) + ‖g‖Gp,T (ΓN ) + ‖p‖Pp,T

)
.

Combined with (A4), this yields the announced estimate and completes the proof.

A.1.2. Proof of Corollary 3.3

Notice that the constraint of system (14) also writes∫
ΓN

(
u− 1

|ΓN |
hn

)
· n dΓN = 0 in (0, T ).

We then proceed with a lifting method. We need to define an extension of
1

|ΓN |
hn

in Ω. Let us first define extensions of
1

|ΓN |
h(0)n and

1

|ΓN |
ḣ(0)n. Recall that h(0) ∈

R and ḣ(0) ∈ R do not depend on the space variable. Since by assumption n ∈
W2−1/p,p(ΓN ) ↪→ W2/p′−1/p,p(ΓN ), there exists H0 ∈ W2,p(Ω) and Ḣ0 ∈ W2/p′,p(Ω)
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respective extensions of
1

|ΓN |
h(0)n and

1

|ΓN |
ḣ(0)n such that

H0|ΓN
=

1

|ΓN |
h(0)n, ‖H0‖W2,p(Ω) ≤ C‖h(0)‖R, (A5a)

Ḣ0|ΓN
=

1

|ΓN |
ḣ(0)n, ‖Ḣ0‖W2/p′,p(Ω) ≤ C‖ḣ(0)‖R. (A5b)

We now define an extension H of
1

|ΓN |
hn by solving first the following heat equation

with mixed boundary conditions, dealing with Ḣ as unknown:

Ḧ − κ∆Ḣ = 0 in Ω× (0, T ), Ḣ|ΓN
=

1

|ΓN |
ḣn on ΓN × (0, T ),

Ḣ = 0 on ΓD × (0, T ), Ḣ(0) = Ḣ0 in Ω.

Since n ∈W2−1/p,p(ΓN ), we have
1

|ΓN |
ḣn ∈ Hp,T (ΓN ). From [16] the solution of this

equation satisfies

‖Ḣ‖U̇p,T (Ω) ≤ C
(
‖ḣn‖Hp,T (ΓN ) + ‖Ḣ0‖W2/p′,p(Ω)

)
≤ C

(
‖ḣ‖W1−1/2p,p(0,T ;R) + ‖ḣ(0)‖R

)
= C‖ḣ‖Hp,T

, (A6)

where we have used (A5b). Using (5), we deduce in particular

‖Ḣ(0)‖W2/p′,p(Ω) + κ

∥∥∥∥∥∂Ḣ∂n
∥∥∥∥∥
Gp,T (ΓN )

≤ C‖ḣ‖Hp,T
. (A7)

Further, we set H(·, t) = H0 +

∫ t

0
Ḣ(·, s)ds, which implies

‖H‖Up,T (Ω) ≤ C
(
‖H0‖W2,p(Ω) + ‖Ḣ‖U̇p,T (Ω)

)
≤ C

(
‖h(0)‖R + ‖ḣ‖Hp,T

)
, (A8)

where we have used (A5a) and (A6), and thus we obtain in particular

‖H‖Lp(0,T ;W2,p(Ω)) + ‖(σL(0).∇H)n‖Gp,T (ΓN ) ≤ C
(
‖h(0)‖R + ‖ḣ‖Hp,T

)
. (A9)

Now define ū := u−H. We rewrite system (14) as

¨̄u− κ∆ ˙̄u− div(σL(0).∇ū) = f + div(σL(0).∇H) in Ω× (0, T ),

κ
∂ ˙̄u

∂n
+ (σL(0).∇ū)n+ pn = g − κ∂Ḣ

∂n
− (σL(0).∇H)n on ΓN × (0, T ),∫

ΓN

ū · n dΓN = 0 in (0, T ),

ū = 0 on ΓD × (0, T ),

u(·, 0) = u0 − h0, ˙̄u(·, 0) = u̇0 − ḣ0 in Ω,

(A10)
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We recognize system (12) satisfied by (ū, p). Then from Proposition 3.2 there exists a
unique (ū, p) ∈ Up,T (Ω)× Pp,T , and it satisfies

‖ū‖Up,T (Ω) + ‖p‖Pp,T
≤ C

(
‖f‖Fp,T

+ ‖H‖Lp(0,T ;W2,p(Ω))

+‖g‖Gp,T (ΓN ) + ‖(σL(0).∇H)n‖Gp,T (ΓN ) + κ

∥∥∥∥∥∂Ḣ∂n
∥∥∥∥∥
Gp,T (ΓN )

+‖(u0, u̇0)‖U(0,1)
p (Ω) + ‖(H0, Ḣ0)‖U(0,1)

p (Ω)

)
,

≤ C
(
‖f‖Fp,T

+ ‖g‖Gp,T (ΓN ) + ‖h(0)‖R + ‖ḣ‖Hp,T

+‖(u0, u̇0)‖U(0,1)
p (Ω)

)
where we have used (A7)-(A9) and (A5a)-(A5b). Further, the couple (u, p) = (ū+H, p)
satisfies

‖u‖Up,T (Ω) + ‖p‖Pp,T
≤ ‖ū‖Up,T (Ω) + ‖p‖Pp,T

+ ‖H‖Up,T (Ω),

which, combined with the previous estimate and (A8), yields

‖u‖Up,T (Ω) + ‖p‖Pp,T
≤ C

(
‖f‖Fp,T

+ ‖g‖Gp,T (ΓN ) + ‖h‖Hp,T
+ ‖(u0, u̇0)‖U(0,1)

p (Ω)

)
.

This provides the existence of solution (u, p). Uniqueness is due to the linearity of
system (14): Considering two solutions of (14), their difference satisfies system (12)
with zero right-hand-sides, and therefore is equal to zero, because solutions of (12) are
unique, which concludes the proof.

A.2. Examples of strain energies

Let us give a set of examples of classical strain energies from the literature, and show
that they satisfy the assumptions A1–A3.

A.2.1. The Saint Venant-Kirchhoff’s model.

It corresponds to the following strain energy

W1(E) = µLtr
(
E2
)

+
λL
2

tr(E)2,

where µL > 0 and λL ≥ 0 are the so-called Lamé coefficients. The energy is clearly
twice differentiable, its first- and second-derivatives of W1 are given respectively by

Σ̌1(E) = 2µLE + λLtr(E)I,
∂2W1

∂E2
(E) =

∂Σ̌1

∂E
(E) = 2µLI + λLI⊗ I,

where I ∈ Rd×d×d×d denotes the identity tensor of order 4. In particular, we see that
if the matrix E is symmetric, then Σ̌1 defines a symmetric matrix. Therefore Assump-
tions A1-A2 are satisfied by this strain energy. Further, regarding Assumption A3,

43



we see that

σL(0).∇v = ∇vΣ̌1(0) +
1

2

∂2W1

∂E2
(0).(∇v +∇vT ) = 2µLε(v) + λLtrace(ε(v))I.

where we have introduced the notation ε(v) = 1
2(∇v + ∇vT ) for the symmetric part

of ∇v. The operator σL(0) then corresponds to the well-known linearized Lamé opera-
tor, which defines the coercive operator −div(σL(0).∇v) under the condition v|ΓD

= 0,
in virtue of the Petree-Tartar lemma [15, Lemma A.38 page 469]. We can also refer
to the Korn’s inequality for this claim. Therefore we can claim that Assumption A3 is
satisfied for this example.

A.2.2. The Fung’s model.

It corresponds to the following strain energy

W2(E) =W2(0) + β
(
exp

(
γ tr(E2)

)
− 1
)
,

where W2(0) ≥ 0, β > 0 and γ > 0 are given coefficients. The space W1,p(Ω) is invari-
ant under composition of the exponential function when p > d (see [3], Lemma A.2.
page 359). The first- and second-derivatives of W2 are given respectively by

Σ̌2(E) = 2γβ exp
(
γ tr(E2)

)
E,

∂Σ̌2

∂E
(E) = β exp

(
γ tr(E2)

) (
2γI + (2γ)2E ⊗ E

)
.

Again, if E is symmetric, then Σ̌2 is symmetric. Assumptions A1-A2 are then satisfied.
For Assumption A3, we need to evaluate

σL(0).∇v = ∇vΣ̌2(0) +
∂2W2

∂E2
(0).(ε(v)) = 2βγε(v).

Like in the previous example, the operator −div(σL(0).∇v) is coercive, and thus As-
sumption A3 is satisfied.

A.2.3. The Ogden’s model.

The family of strain energies corresponding to this model are linear combinations of
energies of the following form

W3(E) = tr ((2E + I)γ − I) ,

where γ ∈ R. Since the tensor 2E + I is real and symmetric, the expression (2E + I)β

makes sense for any β ∈ R by diagonalizing 2E + I, and the energy W3(E) can be
expressed in terms of the eigenvalues of 2E + I. Since 2E(u) + I = (I +∇u)T (I +∇u),
if (λi)1≤i≤d denote the singular values of I +∇u, and (µi)1≤i≤d denote those of E(u),
we have

W3(E) =

d∑
i=1

(
λ2γ
i − 1

)
=

d∑
i=1

((1 + 2µi)
γ − 1) , Σ̌3(E) = 2γ(2E + I)γ−1.
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Denoting by (vl)1≤l≤d the normalized orthogonal eigenvectors of E, we further write

Σ̌3(E) =

d∑
i=1

2γ(2µi + 1)γ−1vi ⊗ vi.

Note that the operator vi ⊗ vi is the projection on Span(vi), and Assumption A2 is
satisfied by Σ̌3. The sensitivity of the eigenvalues and eigenvectors with respect to
the matrix can be derived for example from [18] (see Theorem IV.2.3 page 183, and
Remark 2.9 page 239). Thus after calculations we get

∂Σ̌3

∂E
(E) = 2γ

d∑
i=1

2(γ − 1)(2µi + 1)γ−2(vi ⊗ vi)⊗ (vi ⊗ vi)

+2γ

d∑
i=1

(2µi + 1)γ−1
∑
j 6=i

1

µi − µj
(vj ⊗ vi)⊗ (vj ⊗ vi).

This expression shows that the strain energy W3 fulfills also Assumption A1. Finally,
considering the vectors (vi)1≤i≤d of the canonical basis as normalized orthogonal eigen-
vectors of matrix E = 0 (with eigenvalues µi = 0), we evaluate

σL(0).∇u = ∇uΣ̌3(0) +
∂Σ̌3

∂E
(0).(ε(u)) = 2γ∇u+ 4γ(γ − 1)

d∑
i=1

(
(vi ⊗ vi) : ε(u)

)
(vi ⊗ vi),

(σL(0).∇u) : ∇u = 2γ|∇u|2Rd×d + 4γ(γ − 1)

d∑
i=1

(
(vi ⊗ vi) : ε(u)

)2

.

We then obtain a coercive operator, provided that for example γ ≥ 1, and deduce that
Assumption A3 is also satisfied for this model.

A.3. A Lagrangian mechanics perspective

Introduce formally the Lagrangian functional associated with Problem (P̃) as follows:

L̃(ỹ0, ỹ1, p̃, ξ̃, τ, ζ̃0, ζ̃1, π̃) =

∫ 2

0

µ̇c(ỹ0, ỹ1, ξ̃)ds+ φ(1)(ỹ0, ỹ1)(1) + φ(2)(ỹ0, ỹ1)(2)

+

∫ 2

0

〈 ˙̃y1 − µ̇f(ξ̃), ζ̃1〉Lp(Ω),Lp′ (Ω)ds

+

∫ 2

0

µ̇〈κ∇ỹ1 + σ(∇ỹ0),∇ζ̃1〉W1,p(Ω),W1,p(Ω)′ds

+〈 ˙̃y0 − µ̇ỹ1, ζ̃0〉U̇p,2(Ω),U̇p,2(Ω)′ − 〈g̃, ζ̃1〉Gp,2(ΓN ),Gp,2(ΓN )′

+

∫ 2

0

µ̇π̃

∫
Ω

detΦ(ỹ0) dΩ ds

+

∫ 2

0

µ̇p̃

∫
ΓN

ζ̃1 · cof(Φ(ỹ0))n dΓN ds.
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Recall that the dependence of L̃ with respect to τ is represented by the change of
variables µ̇ = µ̇(·, τ). Coming back to the original variables, namely

ỹ0(·, s) = y0(·, µ(s, τ)), ỹ1(·, s) = y1(·, µ(s, τ)), p̃(s) = p(µ(s, τ)),

ξ̃(·, s) = ξ(·, µ(s, τ)),

ζ̃0(·, s) = ζ0(·, µ(s, τ)), ζ̃1(·, s) = ζ1(·, µ(s, τ)), π̃(s) = π(µ(s, τ)),

f̃(·, s) = f(·, µ(s, τ)), g̃(·, s) = g(·, µ(s, τ)),

we have

L̃(ỹ0, ỹ1, p̃, ξ̃, τ, ζ̃0, ζ̃1, π̃) = L(y0, y1, p, ξ, τ, ζ0, ζ1, π),

where

L(y0, y1, p, ξ, τ, ζ0, ζ1, π) =

∫ T

0

c(y0, y1, ξ)dt+ φ(1)(y0, y1)(τ) + φ(2)(y0, y1)(T )

+

∫ T

0

〈ẏ1 − f(ξ), ζ1〉Lp(Ω),Lp′ (Ω)dt

+

∫ T

0

〈κ∇y1 + σ(∇y0),∇ζ1〉W1,p(Ω),W1,p(Ω)′dt

+〈ẏ0 − y1, ζ0〉U̇p,T (Ω),U̇p,T (Ω)′ − 〈g, ζ1〉Gp,T (ΓN ),Gp,T (ΓN )′

+

∫ T

0

π

∫
Ω

detΦ(y0) dΩ dt+

∫ T

0

p

∫
ΓN

ζ1 · cof(Φ(y0))ndΓN dt.

Differentiating L̃ with respect to (ζ̃0, ζ̃1, π̃) yields system (24). Differentiating L̃ with
respect to (ỹ0, ỹ1, p̃) yields system (29). And differentiating L̃ with respect to (ξ̃, τ)
yields (33). Therefore a critical point of functional L̃ satisfies the optimality conditions
stated in Theorem 4.9. Actually, following the approach adopted in [9], we could show
that an optimal solution of Problem (P̃) is necessarily a critical point of function L̃.
Further, the optimality conditions stated as in Corollary 4.10 correspond to a critical
point of mapping L.

Remark 8. Let us detail the term of L derived from the strain energy, namely

〈σ(∇y0),∇ζ1〉W1,p(Ω),W1,p(Ω)′ = 〈(I +∇y0)Σ̌(E(y0)),∇ζ1〉W1,p(Ω),W1,p(Ω)′

= 〈Σ̌(E(y0)), (I +∇y0)T∇ζ1〉W1,p(Ω),W1,p(Ω)′

= 〈Σ̌(E(y0)), E′(y0).ζ1〉W1,p(Ω),W1,p(Ω)′

with E′(y0).ζ1 = 1
2((I +∇y0)T∇ζ1 +∇ζT1 (I +∇y0), because the tensor Σ̌ is assumed

to be symmetric in Assumption A2. Further, recall that Σ̌(E(y0)) =
∂W
∂E

(E(y0)), and

thus

〈σ(∇y0),∇ζ1〉W1,p(Ω),W1,p(Ω)′ =
∂

∂y0
(W(E(y0))).ζ1.

46



A.4. The control operator in the context of cardiac electrophysiology

The control is realized through a distributed right-hand-side f in equation (1a). In

practice this function is expressed in terms of the fiber direction, denoted by f̂, namely
a vector tangent to the tissue, depending on the geometry and considered as a part of
the data. More precisely, f is chosen in the form

f = div(saf̂⊗ f̂),

where sa is a scalar function, depending on space and time, that we choose as being
the command, denoted formally by ξ throughout the paper. The tensor saf̂⊗ f̂ is the
so-called active stress tensor. Since on ∂Ω the vector f̂ is tangent, by the Green formula
the following inner product by any test function ϕ writes simply as

〈f(ξ);ϕ〉L2(Ω) = −
∫

Ω
div(ξf̂⊗ f̂) · ϕdΩ =

∫
Ω
ξ(̂f⊗ f̂ : ∇ϕ) dΩ.

Denoting by ω ⊂ Ω the control domain, an example of control space for the distributed
control function ξ on ω is the following

Xp,T (ω) = Lp(0, T ; W1,p(ω)).

In this example the control function ξ is only scalar, but since the quantity to maximize,
namely the variations of the pressure p, is also scalar, and moreover depends only on
time, we expect that the set of controls is rich enough for our purpose.
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